首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substance P-like immunoreactivity cellular in toad sympathetic ganglia was studied in normal and capsaicin-treated ganglia. In the eighth sympathetic ganglion substance P-like immunoreactive are found in mast cells and SIF cells. The effect of substance P (0.001-0.003 mM) caused increase of compound action potential during tetanical stimulation (50 Hz by 40 sec.) and post-tetanic potentiation (0.1 Hz). Our results show that substance P facilitates synaptic transmission in the sympathetic ganglia from Caudiverbera caudiverbera.  相似文献   

2.
Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallel decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

3.
Summary Rat spinal cord, dorsal root ganglia and skin were investigated employing immunohistochemical technique with specific antisera to neurokinin A and substance P. Neurokinin A-like immunoreactivity was detected in the spinal dorsal horn and skin with a similar distribution pattern as that of substance P-like immunoreactivity. After dorsal root transection a parallell decrease of neurokinin A and substance P-like immunoreactivity was observed in the dorsal horn. Using colchicine pretreatment a population of neurokinin A positive cell bodies was seen in the dorsal root ganglia, and by comparison of consecutive sections of the same cells stained for substance P it was revealed that these neurons also display substance P-like immunoreactivity. However, substance P-, but not neurokinin A-, immunoreactive cells were also observed. It is concluded that neurokinin A- and substance P-like immunoreactivity coexist in a population of rat primary sensory neurons.  相似文献   

4.
Summary The distribution of substance P-like immunoreactivity in the stomatogastric nervous systems of three decapod crustacean species, Cancer borealis, Homarus americanus, and Panulirus interruptus, was studied. The stomatogastric ganglion showed dense staining in the neuropil, but none in the somata. A single neuron stained in the esophageal ganglion. Lucifer yellow backfills and intracellular injections followed by incubation with the substance P antibody showed that the axons of this neuron project into the inferior esophageal nerves towards the paired commissural ganglia. The commissural ganglia showed a pronounced projection from a large bundle of fibers in the anterior medial portion of the circumesophageal connective. Additionally, less dense neuropil and stained somata were seen in the commissural ganglia. Staining was completely blocked by preabsorption with authentic substance P, physalaemin, eledoisin, and substance K. These data suggest that in the nervous system of crustacean species a molecule with C-terminal homology to substance P and other tachykinins is released as a neuroregulator in the stomatogastric ganglion.  相似文献   

5.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

6.
The distribution of serotonin-, GABA- and substance P-like immunoreactivity has been studied in the cerebral and visceral ganglia and in some peripheral tissues of Mytilus galloprovincialis (Moleusca, Bivalvia). Cerebral ganglia contain a developed serotonin-immunoreactive neuronal subpopulation and numerous GABA-immunoreactive neurons, whereas neurons positive for substance P are sparse. In peripheral tissues innervated by the cerebral ganglia (labial palps and oesophagus) only serotonin-immunoreactive nerve fibers were found. In the visceral ganglia, serotonin- and GABA-immunoreactive neurons are far less numerous than in the cerebral ganglia, whereas several neurons positive for substance P are scattered in all cortical zones. Serotonin-immunoreactive plexuses innervate the posterior adductor muscle and the gill filaments which contain also a developed nerve network positive for substance P. The distribution pattern of the immunoreactive elements in the ganglia and in peripheral territories indicates that GABA should exert only a central action, whereas serotonin and a substance P-like peptide are involved both in central and peripheral neurotransmission.  相似文献   

7.
Summary The morphology and distribution of nerve fibers showing enkephalin-like immunoreactivity was studied in rat and mouse iris whole mounts. In adult rat, a relatively dense network of varicose fibers was seen throughout the iris. Individual, long, usually smooth fibers were observed running together with non-fluorescent fibers in bundles. Positive nerve fibers were also seen in the ciliary body and the choroid membrane. The fluorescence intensity was normally low. No enkephalin-positive fibers were detected in adult mouse iris.Extirpation or lesioning either one or all the three ganglia known to supply the rat iris with nerve fibers, the superior cervical, the ciliary and the trigeminal ganglia, caused no detectable decrease in amount of enkephalin-positive fibers. However, in irides grafted to the anterior eye chamber of adult recipients, no enkephalin-positive fibers could be observed 2–12 days postoperatively, strongly suggesting that degeneration of these fibers had occurred. When iris grafts were left longer in the eye, nerve fibers with enkephalin-like immunoreactivity reappeared. An increased fluorescence intensity was observed both in the ipsilateral and contralateral iris following extirpation or lesioning all three ganglia and in the ipsilateral iris after extirpation of the ciliary ganglion. Three days after a systemic injection of capsaicin, which causes a permanent disappearance of substance P fibers, the same phenomenon was often observed. This raises the possibility of an interaction between the enkephalin-positive and the substance P fiber systems in the iris.The present experiments thus demonstrate a rich network of enkephalin immunoreactive nerve fibers in the rat iris originating outside the iris but apparently not in the ciliary, trigeminal or superior cervical ganglion.  相似文献   

8.
Trigeminal ganglion cells supplying the cornea were traced with intra-axonally transported horseradish peroxidase and, subsequently studied for the presence of substance P-like immunoreactivity. Approximately 0%-30% of trigeminal ganglion cells contained immunoreactive substance P. These cells were of a small size (15-50 micrometers in diameter) and were distributed throughout the ganglion. The ganglion cells supplying the cornea were of a relatively small size as well but were confined to the anteromedial part of the ganglion. Some of these cells were found to contain immunoreactive substance P.  相似文献   

9.
The distribution and origin of substance P immunoreactive nerve elements have been studied in the guinea-pig prevertebral ganglia by the indirect immunohistochemical technique, using a monoclonal antibody to substance P. Non-varicose substance P immunoreactive nerve fibres enter or leave the ganglia in all nerves associated with them, traversing the ganglia in larger or smaller bundles. Networks, mainly single-stranded, of varicose substance P immunoreactive nerve fibres also permeate the ganglia, forming a loose meshwork among the neurons. Similar networks are present in the lumbar paravertebral ganglia. In all these ganglia, neuronal somata do not in general show substance P immunoreactivity. The various nerves connected with the inferior mesenteric ganglion have been cut, in single categories and in various combinations, and the ganglion examined, after intervals of up to six days. Cutting the colonic or hypogastric nerves, which connect the ganglion with the hindgut and pelvic organs, leads to accumulation of substance P immunoreactive material in their ganglionic stumps, extending retrogradely to intraganglionic non-varicose fibres traceable through into the intermesenteric and lumbar splanchnic nerves. There is some local depletion of intraganglionic varicose networks. Cutting the intermesenteric nerve, which connects the coeliac-superior mesenteric ganglion complex with the ganglion, leads to accumulation of substance P immunoreactive material in its cranial stump and depletion of its distal stump; a minimal depletion is detectable in the inferior mesenteric ganglion itself. Cutting the lumbar splanchnic nerves, which connect the ganglion with the upper lumbar spinal cord and dorsal root ganglia, leads to accumulation of substance P immunoreactive material in their proximal stumps and total depletion of their distal, ganglionic stumps; in the ganglion there is subtotal loss of non-varicose substance P immunoreactive fibres and of varicose nerve networks, and the few surviving non-varicose fibres are traceable across the ganglion from the intermesenteric nerve to the colonic and hypogastric nerves. Cutting the intermesenteric and lumbar splanchnic nerves virtually abolishes substance P immunoreactive elements from the ganglion within three days postoperatively. It is concluded that these arise centrally to the ganglion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Summary We examined the parietal eye visual system of the iguanid lizard Uta stansburiana for the presence of substance P-like immunoreactivity by use of both immunofluorescence and peroxidase-antiperoxidase techniques. In the parietal eye no substance P-containing somata were found; however, its plexiform layer contained small (ca. 1 m diam) immunoreactive fibers. These fibers apparently originate outside the parietal eye. Immunoreactive fibers also were found in the parietal nerve, the dorsal sac, and the leptomeninx of the pineal gland. No labeled somata were observed in any of these regions in either normal or colchicine treated animals. Previously we demonstrated that a system of centrifugal fibers to the parietal eye originates from neurons in the dorsal sac (Engbretson et al. 1981). The apparent absence of substance P-containing neurons in the dorsal sac suggests that the substance P-containing fibers in the parietal eye are not the previously observed centrifugal fibers. The source of the substance P-containing fibers in the parietal eye is unknown. The pars dorsolateralis of the left medial habenular nucleus receives a dense substance P-positive projection. No such projection was seen in the right habenula. Simultaneous visualization of the terminals of ganglion cells of the parietal eye (labeled with orthograde intraaxonally transported horseradish peroxidase) and substance P-like immunofluorescence showed that the locus of habenular immunoreactivity is distinct from the projection field of the parietal eye. Thus the substance P-positive terminals in the habenula do not originate in the parietal eye. Transection of the parietal nerve confirmed this conclusion.  相似文献   

11.
Summary Trigeminal ganglion cells supplying the cornea were traced with intra-axonally transported horseradish peroxidase and, subsequently studied for the presence of substance P-like immunoreactivity. Approximately 0%–30% of trigeminal ganglion cells contained immunoreactive substance P. These cells were of a small size (15–50 m in diameter) and were distributed throughout the ganglion. The ganglion cells supplying the cornea were of a relatively small size as well but were confined to the anteromedial part of the ganglion. Some of these cells were found to contain immunoreactive substance P.  相似文献   

12.
Summary The distribution of nerve growth factor receptor (NGF receptor)-like immunoreactivity in pulps of developing primary and mature permanent cat canine teeth was examined, by use of a monoclonal antibody against NGF receptor detected by fluorescence immunohistochemistry and pre-embedding immunocytochemical light- and electron microscopy. Both primary and permanent pulps contained a vast number of NGF receptor-like immunoreactive nerves. Immunolabelling appeared to be localized both to axons and Schwann cells. In addition, many blood vessel walls in immature primary tooth pulps showed NGF receptor-like immunoreactivity, in contrast to permanent pulps where blood vessels rarely were NGF receptor-immunoreactive. Double-labelling immunofluorescence experiments revealed that in the permanent pulp a majority of the NGF receptor-positive nerves also showed calcitonin gene-related peptide (CGRP)-like immunoreactivity, and many showed substance P-like immunoreactivity. However, nerve fibers with neuropeptide Y-like immunoreactivity lacked NGF receptor-like immunoreactivity. In developing primary tooth pulps fewer NGF receptor-positive nerves were CGRP-like immunoreactive or substance P-like immunoreactive, as compared to the permanent pulp. Neuropeptide Y-like immunoreactive nerve fibers were not detected in the primary tooth pulp. The results suggest a role for nerve growth factor in both developing and mature sensory nerves of the tooth pulp.  相似文献   

13.
Rat trigeminal ganglion neurons projecting to the oral mucosa or to tooth pulps have different cell diameters and contain different chemical markers. In the present paper we examine whether trigeminal ganglion neurons sending axons to gingiva or tooth pulps in the lower jaw of the cichlid Tilapia mariae differ in a similar way. Retrograde tracing with fluorescent latex microspheres revealed labelled gingival and pulpal neurons in the caudal part of the trigeminal ganglion. The gingival neurons had a unimodal size distribution (peak 11 μm; range 8–14 μm) and the pulpal neurons exhibited a bimodal size distribution (peaks 12 and 25 μm; range 10–40 μm). Immunohistochemistry revealed a calcitonin gene-related peptide-like immunoreactivity in some 40% of the gingival neurons and a substance P-like immunoreactivity in 30%. Of the small pulpal neurons about 60% exhibited a calcitonin gene-related peptide-like immunoreactivity and 15% showed a substance P-like immunoreactivity. Of the large pulpal neurons some 70% exhibited a calcitonin gene-related peptide-like immunoreactivity. These neurons did not show a substance P-like immunoreactivity. In some animals a few trigeminal ganglion neurons showed a neuropeptide Y- or a vasoactive intestinal polypeptide-like immunoreactivity. Perikarya with a tyrosine hydroxylase- or a choline acetyl transferase-like immunoreactivity were not observed. We conclude that gingiva and tooth pulps in the lower jaw of T. mariae are innervated by trigeminal ganglion neurons, the cell diameters and neuropeptide contents of which differ in a pattern similar to that in the rat. Hence, this seems to represent a conserved evolutionary pattern.  相似文献   

14.
Summary With the peroxidase-antiperoxidase immunohistochemical method we ascertained the presence of substance P-like immunoreactivity (SPLI) in fibers and cell bodies of the trigeminal sensory system of the pit viper, Agkistrodon blomhoffi. There are a few SPLI fibers each in the principal sensory nucleus and the main neuropil of the lateral descending nucleus (i.e., the infrared sensory nucleus); a moderate number in the descending nucleus; and a large number in the caudal subnucleus, the medial edges of the interpolar subnucleus, and the marginal neuropil of the lateral descending nucleus. About 30% of the cell bodies in the ophthalmic and maxillo-mandibular ganglia show SPLI, and of the two craniocervical ganglia, the proximal ganglion has many more cells with SPLI than the distal ganglion. The SPLI distribution in the common trigeminal sensory system is similar to that of mammals, and suggests that the function of this system is also similar. In the infrared sensory system, the differing distribution in the main and marginal neuropils suggests separate functions for these two structures in the system.  相似文献   

15.
Substance P-immunoreactive neurons were demonstrated in chick embryonic and adult trigeminal ganglion and jugular-superior ganglionic complex using FITC-immunohistochemical methods. Both small-size and large ganglion cells exhibited SP immunoreactivity, without apparent changes during embryonic and post-hatching development. SP-positive fibers could be detected in a good number in the sympathetic cranial cervical ganglion, either during embryonic development or in adult chick. No immunoreactive perikarya were observed in this ganglion. In the ciliary ganglion, both choroidal and ciliary neurons were SP-negative, whereas SP immunoreactive fibers surrounded the perikarya of both cell populations.  相似文献   

16.
FMRFamide-like immunoreactivity was detected histochemically in the sea scallopPlacopecten magellanicus. Most immunoreactivity was concentrated in the cerebral, pedal, and parietovisceral ganglia, particularly in the cortical cell bodies and in their fibers which extend into the central neuropile. Whole-mount immunofluorescence studies were used to localize concentrations of immunoreactive cells on the dorsal and ventral surfaces of each ganglion. Immunoreactivity was also detected in nerves emanating from the ganglia. Strong immunoreactivity was localized in peripheral organs, including the gut and gills of juvenile and adult scallops. Weak immunoreactivity was detected in the gonads, heart, and adductor muscle of the adults. A broad FMRFamide-like immunoreactive band of 2.5–8.2 kDa was detected by Western blotting of acetone extracts of the parietovisceral ganglia. In the presence of protease inhibitors, two FMRFamide-like immunoreactive bands (7.2–8.2 kDa and >17 kDa) were obtained. Neither of these bands comigrated with the FMRFamide standard. It is concluded that peptides of the FMRFamide family are probably regulators of numerous central and peripheral functions inP. magellanicus.  相似文献   

17.
Recent studies have suggested that enteric inhibitory neurotransmission is mediated via interstitial cells of Cajal in some gastrointestinal tissues. This study describes the physical relationships between enteric neurons and interstitial cells of Cajal in the deep muscular plexus (IC-DMP) of the guinea-pig small intestine. c-Kit and vimentin were colocalized in the cell bodies and fine cellular processes of interstitial cells of the deep muscular plexus. Anti-vimentin antibodies were subsequently used to examine the relationships of interstitial cells with inhibitory motor neurons (as identified by nitric oxide synthase-like immunoreactivity) and excitatory motor neurons (using substance P-like immunoreactivity). Neurons with nitric oxide synthase- and substance P-like immunoreactivities were closely associated with the cell bodies of interstitial cells and ramified along their processes for distances greater than 300 7m. With transmission electron microscopy, we noted close relationships between interstitial cells and the nitric oxide synthase- and substance P-like immunoreactive axonal varicosities. Varicosities of nitric oxide synthase and substance P neurons were found as close as 20 and 25 nm from interstitial cells, respectively. Specialized junctions with increased electron density of pre- and postsynaptic membranes were observed at close contact points between nitric oxide synthase- and substance P-like immunoreactive neurons and interstitial cells. Close structural relationships (approximately 25 nm) were also occasionally observed between either nitric oxide synthase- and substance P-like immunoreactive varicosities and smooth muscle cells of the outer circular muscle layer. The data suggest that interstitial cells in the deep muscle plexus are heavily innervated by excitatory and inhibitory enteric motor neurons. Thus, these interstitial cells may provide an important, but probably not exclusive, pathway for nerve-muscle communication in the small intestine.  相似文献   

18.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

19.
The concentrations of tachykinins in rat spinal cord and dorsal root ganglia (DRGs) were measured using a combination of high performance liquid chromatography (HPLC) and radioimmunoassays (RIAs). Substance P-like immunoreactivity (SPLI) was found to be significantly higher than either substance K-like immunoreactivity (SKLI) or neuromedin K-like immunoreactivity (NMKLI) in both tissues. In the spinal cord, the concentration of SKLI was comparable to that of NMKLI. In DRGs, NMKLI is present at concentrations much lower than those of SKLI or SPLI. In addition to immunoreactive components co-eluting with the three mammalian tachykinins SP, SK and NMK, analyses using reverse-phase HPLC revealed an immunoreactive peak co-eluting with the C-terminal octapeptide of SK (SK3-10), and a yet to be identified peak eluting before SK. This study also demonstrates the use of a novel and highly specific RIA for NMK to measure NMKLI without the need of reverse-phase HPLC.  相似文献   

20.
Summary The occurrence and distribution of endocrine cells and nerves were immunohistochemically demonstrated in the gut and rectal gland of the ratfish Chimaera monstrosa (Holocephala). The epithelium of the gut mucosa revealed open-type endocrine cells exhibiting immunoreactivity for serotonin (5HT), gastrin/cholecystokinin (CCK), pancreatic polypeptide (PP)/FMRFamide, somatostatin, glucagon, substance P or gastrin-releasing peptide (GRP). The rectum contained a large number of closed-type endocrine cells in the basal layer of its stratified epithelium; the majority contained 5HT- and GRP-like immunoreactivity in the same cytoplasm, whereas others were immunoreactive for substance P. The rectal gland revealed closed-type endocrine cells located in the collecting duct epithelium. Most of these contained substance P-like immunoreactivity, although some reacted either to antibody against somatostatin or against 5HT. Four types of nerves were identified in the gut and the rectal gland. The nerve cells and fibers that were immunoreactive for vasoactive intestinal peptide (VIP) and GRP formed dense plexuses in the lamina propria, submucosa and muscular layer of the gut and rectal gland. A sparse network of gastrin- and 5HT-immunoreactive nerve fibers was found in the mucosa and the muscular layer of the gut. The present study demonstrated for the first time the occurrence of the closed-type endocrine cells in the mucosa of the rectum and rectal gland of the ratfish. These abundant cells presumably secrete 5HT and/or peptides in response to mechanical stimuli in the gut and the rectal gland. The peptide-containing nerves may be involved in the regulation of secretion by the rectal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号