首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The spice principles curcumin (from turmeric) and eugenol (from cloves) are good inhibitors of lipid peroxidation. Lipid peroxidation is known to be initiated by reactive oxygen species. The effect of curcumin and eugenol on the generation of reactive oxygen species in model systems were investigated. Both curcumin and eugenol inhibited superoxide anion generation in xanthine-xanthine oxidase system to an extent of 40% and 50% at concentrations of 75 M and 250 M respectively. Curcumin and eugenol also inhibited the generation of hydroxyl radicals (.OH) to an extent of 76% and 70% as measured by deoxyribose degradation. The.OH-radical formation measured by the hydroxylation of salicylate to 2,3-dihydroxy benzoate was inhibited to an extent of 66% and 46%, respectively, by curcumin and eugenol at 50 M and 250 M. These spice principles also prevented the oxidation of Fe2+ in Fentons reaction which generates.OH radicals.  相似文献   

2.
The effect of eugenol on xanthine oxidase (XO) xanthine(X)-Fe+3-ADP mediated lipid peroxidation was studied in liver microsomal lipid liposomes. Eugenol inhibited the lipid peroxidation in a dose dependent manner as assessed by formation of thiobarbituric acid reactive substances. When tested for its effect on XO activity per se, (by measuring uric acid formation) eugenol inhibited the enzyme to an extent of 85% at 10 µm concentration and hence formation of O2 also However, the concentration of eugenol required for XO inhibition was more in presence of metal chelators such as EDTA, EGTA and DETAPAC, but not in presence of deferoxamine, ADP and citrate. The antiperoxidative effect of eugenol was about 35 times more and inhibition of XO was about 5 times higher as compared to the effect of allopurinol. Eugenol did not scavenge O2 generated by phenazine methosulfate and NAD but inhibited propagation of peroxidation catalyzed by Fe2+ EDTA and lipid hydroperoxide containing liposomes. Eugenol inhibits XO-X-Fe+3 ADP mediated peroxidation by inhibiting the XO activity per se in addition to quenching various radical species. (Mol Cell Biochem 166: 65-71, 1997)  相似文献   

3.
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10–6 M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of -ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation.  相似文献   

4.
Studies were carried out to examine the effects of and interactions between NADPH, Fe2+, Fe3+ and ascorbate on lipid peroxidation in guinea-pig adrenal microsomes. Fe2+, at levels between 10−6 and 10−3 M, produced concentration-dependent increases in lipid peroxidation in adrenal microsomes; Fe2+ had a far greater effect than Fe3+. In liver microsomes, by contrast, Fe2+ and Fe3+ had quantitatively similar effects on lipid peroxidation. NADPH alone had no effect on malonaldehyde production by adrenal microsomes. However, in the presence of low Fe2+ concentrations (10−6 M), NADPH stimulated malonaldehyde production; the stimulation was not demonstrable in microsomes which had been heat-treated to inactive microsomal enzymes. In the presence of high Fe2+ levels (10−3 M), NADPH produced a concentration-dependent inhibition of lipid peroxidation; the inhibition was fully demonstrable in heat-treated microsomes. In the presence of Fe3+ (10−6 to 10−3 M), NADPH had little effect on lipid peroxidation, suggesting that NADPH does not significantly promote the reduction of Fe3+ to Fe2+ in adrenal microsomes. Ascorbate alone increased malonaldehyde production by adrenal microsomes; maximum stimulation occurred at a concentration of 10−4 M. Ascorbate-induced lipid peroxidation was also inhibited by NADPH. Ascorbate (5 · 10−6 to 1 · 10−4 M) synergistically interacted with low levels (10−6 M) of Fe2+ to enhance malonaldehyde production by adrenal microsomes. The synergism was not demonstrable at high concentrations (10−3 M) of Fe2+ At all concentrations (10−6 to 10−3 M) of Fe3+ studied, ascorbate synergistically increased the production of malonaldehyde. The results indicate that interactions between various endogenous substances may be important in the control of adrenal microsomal lipid peroxidation and that there are differences in the regulation of adrenal and hepatic lipid peroxidation.  相似文献   

5.
The effects of iron-induced lipid peroxidation and of lactic acidosis on [3H]choline uptake were investigated on crude synaptosomes prepared from rat cerebral cortices. Fe2+-induced lipid peroxidation as evidenced from the production of thiobarbituric acid reactives substances (TBARS) was correlated with a decrease in high-affinity choline uptake (HACU). Trolox C, a free radical scavenger, prevented both Fe2+-induced TBARS production and decrease in HACU. Lactic acidosis (pH 6.0 for 30 or 60 min) increased the TBARS production with concomitant decrease in HACU (–48%, –78%, respectively). The acidosis dependent decrease was not reversible following pH 7.4 readjustment after 60 min acidosis. It was not prevented by trolox C, although trolox C inhibited the acidosis-induced production of TBARS. The results suggest that the contribution of acidosis to peroxidative damages is probably of less importance in comparison to other cytotoxic mechanisms.  相似文献   

6.
Retina is highly susceptible to oxidative damage due to its high content of polyunsaturated fatty acids (PUFAs), mainly docosahexaenoic acid (22:6 n3). Lipid peroxidation process is thought to be involved in many physiological and pathological events. Many model membranes can be used to learn more about issues that cannot be studied in biological membranes. Sonicated liposomes (SL) and non-sonicated liposomes (NSL) prepared with lipids isolated from bovine retina and characterized by dynamic light-scattering, were submitted to lipid peroxidation, under air atmosphere at 22 °C, with Fe2+ or Fe3+ as initiator, in different aqueous media. Conjugated dienes and trienes, determined by absorption at 234 and 270 nm respectively, and thiobarbituric acid-reactive substances were measured as a function of time. Peroxidation of SL or NSL initiated with 25 μM FeSO4 in 20 mM Tris-HCl pH 7.4 resulted in an increase in TBARS production after a lag phase of 60 min. Incubation of both types of liposomes in water resulted in shortening of the lag phase at 30 min. When lipid peroxidation was performed in 0.15 M NaCl, lag phase completely disappeared. On the other hand, FeCl3 (25 μM) induced a limited production of TBARS only just after 30 min of incubation. When Fe2+- or Fe3+-lipid peroxidation of both types of liposomes was carried out in water or 0.15 M NaCl, formation of conjugated dienes and conjugated trienes were higher than in reactions carried out in 20 mM Tris-HCl pH 7.4.Our results established that both liposome types were susceptible to Fe2+- and Fe3+-initiated lipid peroxidation. However, Fe2+ showed a clearly enhanced effect on peroxidation rate and steady state concentration of oxidation products.We verified that peroxidation of liposomes made of retinal lipids is affected not only by type of initiator but also by aqueous media. This model constitutes a useful system to study formation of lipid peroxidation intermediaries and products in an aqueous environment.  相似文献   

7.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytosol, on Ca2+/calmodulin-dependent cyclic nucleotide (AMP) phosphodiesterase activity in rat liver cytosol was investigated. The addition of Ca2+ (50 µM) and calmodulin 160 U/ml in the enzyme reaction mixture caused a significant increase in cyclic AMP phosphodiesterase activity. This increase was inhibited by the presence of regucalcin (0.5-3.0 µM); the inhibitory effect was complete at 1.0 µM. Regucalcin (1.0 µM) did not have an appreciable effect on basal activity without Ca2+ and calmodulin. The inhibitory effect of regucalcin was still evident even at several fold higher concentrations of calmodulin (160–480 U/ml). However, regucalcin (1.0 µM) did not inhibit Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity in the presence of 100 and 200 µM Ca2+ added. Meanwhile, Cd2 (25–100 µM)-induced decrease in Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity was not reversed by the presence of regucalcin (1.0 µM). The present results suggest that regucalcin can regulate Ca2+/calmodulin-dependent cyclic AMP phosphodiesterase activity due to binding Ca2+ in liver cells.  相似文献   

8.
The effects of ascorbate and a-tocopherol as antioxidants and as co-operative factors against NADPH-dependent lipid peroxidation in human placental mitochondria have been studied. The addition of ascorbate at low concentration (up to 50 M) to the NADPH-generating system resulted in increasing lipid peroxidation and Fe3+ to Fe2+ reduction. High concentration of ascorbate (150 M), which produced maximal rate of ascorbate-dependent lipid peroxidation, was found to inhibit almost completely NADPH-dependent lipid peroxidation by maintaining too much iron in its reduced form. Either stimulatory or inhibitory effect of ascorbate on NADPH-dependent lipid peroxidation depends on the appropriate Fe3+/Fe2+ ratio. -Tocopherol caused a decrease of NADPH-dependent lipid peroxidation, inhibiting completely this process at 150 M concentration. The inhibitory effect of -tocopherol increased rapidly with the increasing ascorbate concentration, almost complete inhibition of NADPH-dependent lipid peroxidation being obtained at 25 M -tocopherol and 50 M ascorbate. This strong inhibitory combined effect of -tocopherol and ascorbate was independent of the Fe3+/Fe2+ ratio, as a-tocopherol is not able to reduce Fe3+ to Fe2+ under the conditions employed. These findings suggest that antioxidant effects of ascorbate in placental mitochondria are mediated by recycling of a-tocopherol rather than by strong reduction of Fe3+ to Fe2+. On the basis of the results obtained, we assume that adequate concentrations of a-tocopherol and ascorbate in placental tissue may prevent the release of lipid peroxide from placental mitochondria and therefore could be protective against the development of preeclampsia.  相似文献   

9.
The effect of regucalcin, isolated from rat liver cytosol, on neutral proteolytic activity in the hepatic cytosol was investigated. The Ca2+-requiring proteinase required 5–10 µM Ca2+ for maximal activity in the presence of a protein substrate (globin). The proteinase activity was markedly elevated by the addition of regucalcin (0.25–2.0 µM) in the absence or presence of Ca2+ (5.0 µM) added. The effect of regucalcin, however, was the greater in the absence of Ca2+ than that in the presence. The pronounced effect of regucalcin on the proteinase activity was also seen in the presence of 1.0 mM EGTA with or without Ca2+ (5.0 µM). In the absence of Ca2+, the regucalcin-increased proteinase activity was clearly inhibited by the presence of anti-regucalcin antiserum (diluted to 240-fold), leupeptin (20 and 200 µg/ml), and heavy metals (25 µM cadmium or 25 µM zinc), although the inhibition was not complete at the concentration used. The present findings suggest that regucalcin increases proteolytic activity in rat liver cytosol, and that regucalcin may activate Ca2+-independent neutral cysteinyl-proteinase.  相似文献   

10.
Spice components and their active principles are potential antioxidants. In this study we examined the effect of phenolic and non-phenolic active principles of common spices on copper ion-induced lipid peroxidation of human low density lipoprotein (LDL) by measuring the formation of thiobarbituric acid reactive substance (TBARS) and relative electrophoretic mobility (REM) of LDL on agarose gel. Curcurriin, capsaicin, quercetin, piperine, eugenol and allyl sulfide inhibited the formation of TBARS effectively through out the incubation period of 12 h and decreased the REM of LDL. Spice phenolic active principles viz. curcumin, quercetin and capsaicin at 10 M produced 40–85% inhibition of LDL oxidation at different time intervals while non-phenolic antioxidant allyl sulfide was less potent in inhibiting oxidation of LDL. However, allyl sulfide, eugenol and ascorbic acid showed pro-oxidant activity at lower concentrations (10 M) and antioxidant activity at higher concentrations (50 M) only. Among the spice principles tested quercetin and curcumin showed the highest inhibitory activity while piperine showed least antioxidant activity at equimolar concentration during initiation phase of oxidation of LDL. The inhibitory effect of curcumin, quercetin and capsaicin was comparable to that of BHA, but relatively more potent than ascorbic acid. Further, the effect of curcurnin, quercetin, capsaicin and BHA on initiation and propagation phases of LDL oxidation showed that curcurnin significantly inhibited both initiation and propagation phases of LDL oxidation, while quercetin was found to be ineffective at propagation phase. These data suggest that the above spice active principles, which constitute about 1–4% of above spices, are effective antioxidants and offer protection against oxidation of human LDL.  相似文献   

11.
Osteoarthritis (OA) is aggravated in menopausal women possibly because of changed serum estrogen levels. Estradiol has been postulated to affect oxidative stress induced by reactive oxygen species (ROS) in articular chondrocytes. We generated ROS in cultured bovine articular chondrocytes by incubating them with combined Fe2SO4, vitamin C, and hydrogen peroxide. The release of thiobarbituric-acid-reactive substances (TBARS, lipid peroxidation) and lactate dehydrogenase (LDH, membrane damage) was measured photometrically. Various estradiol doses and vitamin E, serving as control with an established anti-oxidative capacity, were applied either upon each exchange of medium and during radical production (strategy 1) or only during radical production (strategy 2). In chondrocytes incubated according to strategy 1, the production of TBARS and LDH release were significantly suppressed by 10–10–10–4 M estradiol or by vitamin E. Under strategy 2, the production of TBARS was significantly suppressed at estradiol concentrations higher than 10–6 M, whereas LDH release was inhibited at concentrations of 10–6–10–4 M. Vitamin E showed no significant effects. As repeated application of estradiol and vitamin E produced the best results, estradiol, like vitamin E, was speculated to accumulate in the plasma membrane and to decrease membrane fluidity resulting in protection against lipid peroxidation (non-genomic effect). Thus, in contrast to the neuroprotective effect of 17-estradiol in supraphysiological doses reported recently, the anti-oxidative potential of estradiol appears to protect articular chondrocytes from ROS-induced damage when the hormone is given repeatedly in a physiological range. Decreased estradiol levels may therefore contribute to menopausal OA in the long term.  相似文献   

12.
The ischaemic vulnerability of the heart of spontaneously hypertensive rats (SHR) is enhanced after feeding an α-linolenic acid (LNA) enriched diet. Because oxygen radical-induced reactions (e.g. lipid peroxidation) are involved in the ischaemic damage, an increased susceptibility of the SHR heart to such damaging reactions might be the reason. As a sign of the enhanced susceptibility to lipid peroxidation of LNA-fed SHR, we found (measured as TBARS) higher plasma and heart lipid peroxide levels (3.84 ± 0.50 μmol/l vs 2.98 ± 0.78 μmol/l and 507 ± 127 nmol/g prot. vs 215 ± 80 nmol/g prot., respectively) after feeding LNA. Using Fe2+/Vit. C to induce lipid peroxidation in myocardial tissue homogenates, we demonstrated the enhanced susceptibility to lipid peroxidation of the LNA-fed SHR heart (68 ± 12 nmol/min × g prot. vs 40 ± 8 nmol/min × g prot.) also in vitro. The myocardial enrichment of n-3 polyunsaturated fatty acids (PUFA) resulting in a higher peroxidation index (Pl 227 vs. 170) and the loss in myocardial activities of the antioxidative enzymes (SOD: 76 ± 24 U × 103/g prot. vs 235 ± 150 U × 103/g prot.; GSH-Px: 32 ± 5 U/g prot. vs 110 ± 30 U/g prot.) by feeding LNA could be the cause of the increase in myocardial susceptibility to lipid peroxidation of PUFA supplemented SHR.  相似文献   

13.
Incubation of guinea pig adrenal microsomes with 10?6 M ferrous (Fe2+) ion and adrenal cytosol initiated high levels of lipid peroxidation as measured by the production of malonaldehyde. Cytosol or Fe2+ alone had little effect on microsomal malonaldehyde formation. When microsomes were incubated in the presence of Fe2+ and cytosol, malonaldehyde levels continued to increase for at least 60 min. Accompanying the lipid peroxidation was a decline in adrenal microsomal monooxygenase activities. The rates of metabolism of xenobiotics (benzphetamine demethylase, benzo[α]pyrene hydroxylase) as well as steroids (21-hydroxylation) decreased as malonaldehyde levels increased. In addition, cytochrome P-450 levels, NADPH- and NADH-cytochrome c reductase activities, and substrate interactions with cytochrome(s) P-450 decreased as lipid peroxidation progressed. Inhibition of lipid peroxidation by increasing microsomal protein concentrations during the incubation period prevented the changes in microsomal metabolism. Malonaldehyde had no direct effects on adrenal microsomal enzyme activities. The results indicate that lipid peroxidation may have significant effects on adrenocortical function, diminishing the capacity for both xenobiotic and steroid metabolism.  相似文献   

14.
The antioxidant properties of silibin complexes, the water-soluble form silibin dihemisuccinate (SDH), and the lipid-soluble form, silibin phosphatidylcholine complex known as IdB 1016, were evaluated by studying their abilities to react with the superoxide radical anion (O2.−), and the hydroxyl radical (OH.). In addition, their effect on pulmonary and hepatic microsomal lipid peroxidation had been investigated. Superoxide radicals were generated by the PMS-NADH system and measured by their ability to reduce NBT. IC50 concentrations for the inhibition of the NBT reduction by SDH and IdB 1016 were found to be 25 μM and 316 μM respectively. Both silibin complexes had an inhibitory effect on xanthine oxidase activity. SDH reacted rapidly with OH. radicals at approximately diffusion controlled rate and the rate constant was found to be (K=8·2×109 M −1 s−1); it appeared to chelate Fe2+ in solution. In hepatic microsomes, when lipid peroxidation was induced by Fe2+, SDH inhibited by 39·5 per cent and IdB 1016 by 19·5 per cent, whereas when lipid peroxidation was induced by CuOOH, IdB 1016 exerted a better protective effect than SDH (29·4 per cent and 19·4 per cent inhibition, respectively). In both microsomal systems lipid peroxidation proceeded through a thiol depletion mechanism which could be restored in the presence of silibin complexes. Low levels of lipid peroxidation in pulmonary microsomes point out the differences between in-vitro lipid peroxidation occurring in microsomes of different tissues. The results support the free radical scavenger and antioxidative properties of silibin when it is complexed with a suitable molecule to increase its bioavailabilty. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Calli ofNicotiana tabacum (tobacco) were treated with two dose ranges of aflatoxin B1 (0.1–2.0 µg ml–1 - low does; 5–25 µg ml–1 aflatoxin B1). The ability of calli to recover following 3 weeks of toxin exposure was also investigated. The I50 (50% inhibition) value for fresh mass accumulation was approximately 2 µg ml–1 AFB1. Fresh mass accumulation was significantly lower than the control value from 0.5 µg ml–1 AFB1. Following 3 weeks growth without a toxin source, the growth of calli up to and including 10 µg ml–1 AFB1, was significantly greater than control calli, indicating reversibility of the toxic effects. With increasing toxin concentration, chlorophyll content of callus was inhibited from 0.5 µg ml–1. Transfer to a toxin-free medium resulted in a degree of recovery (up to 0.5 µg ml–1). In the dose range 5–25 µg ml–1, the levels of chlorophyll were drastically reduced, with no recovery following AFB1 removal. Electron microscopy revealed a disruption of chloroplast structure as an early deteriorative event in AFB1 exposure of callus cells. Protein levels were less sensitive, with inhibition manifested only in the high dose range. Shoot development occurred at all concentrations, but was significantly inhibited from 5 µg ml–1 AFB1. Recovery following toxin removal was minimal at these higher AFB1 concentrations. The number of necrotic calli increased progressively from 5 µg ml–1 as toxin levels increased.  相似文献   

16.
The present study was conducted to characterize the possible interaction of Al3+ and Fe2+ with synthetic melanin in the potentiation of lipid peroxidation in liposomes and rat caudate-putamen homogenates. Al3+ stimulated melanin-initiated lipid peroxidation as measured by the production of 2-thiobarbituric acid-reactive substances (TBARS) and conjugated dienes. The effect of Al3+ was dependent on melanin (10–100 g/ml) and Al3+ (2.5–250 M) concentrations and no synergism between Fe2+ and Al3+ was observed. The prooxidant effect of Al3+ was partially inhibited by superoxide dismutase indicating the involvement of O 2 - . Ga3+ and Be2+ which can increase NADH oxidation in the presence of O 2 - , also were shown to stimulate melanin-initiated TBARS production. Based on the effect of Al3+ and other non redox metals, we suggest that Al3+ does not act through either the induction of melanin free radicals, or the induction of changes in membrane physical properties. Results show that Al3+ enhances melanin-initiated lipid peroxidation in part through an interaction with O 2 - generated from the autoxidation of melanin. We speculate that Al3+ contributes to neuromelanin-mediated oxidative damage in dopaminergic neurons and subsequent neuronal degeneration and death in Parkinson's disease.  相似文献   

17.
Sousa-Pinto  Isabel  Lewis  Ray  Polne-Füller  Miriam 《Hydrobiologia》1996,326(1):437-443
Phosphate concentration of the growth medium was found to affect the growth rate and agar yield of a clone of Gelidium robustum grown in the laboratory. To study differences in growth we used phosphate concentrations from 0 to 200 µM. To determine the effect of phosphate on agar yield and its properties we used concentrations from 0 to 20 µM. Growth rates generally increased with increasing phosphate concentration, with the highest growth rate (21% d–1) obtained at 150 µM. Agar yield as percentage of fresh weight was highest (10%) in the algae grown with low phosphate concentrations, but agar yield as percentage of dry weight was highest(43%) at 20 µM of phosphate. Gel strength increased with phosphate concentration with a maximum of 160 g m–2 for 0.75% gels for the cultures at 20 µM. Melting and gelling temperatures of the gels were also affected by phosphate concentration of the growth medium. Starch yield was highest in algae grown in low phosphate concentrations.  相似文献   

18.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 × 103 M−1s−1 at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 μM), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

19.
1. The effects of eugenol on lipid peroxidation catalyzed by hydrogen peroxide (H2O2) or benzoyl peroxide (BPO) in the presence of copper ions were studied in human erythrocyte membranes. 2. The production of hydroxyl radicals was suggested in the peroxidation system catalyzed by H2O2/Cu2+. 3. H2O2/Cu2+-dependent peroxidation was inhibited by eugenol in a concentration-dependent manner; peroxidation was inhibited 62% by 200 microM eugenol. 4. In the presence of eugenol, the peroxidation catalyzed by BPO/Cu2+ was inhibited in a concentration-dependent manner, and more than 100 microM eugenol completely inhibited peroxidation. 5. The inhibitory effect of eugenol was non-competitive against Cu2+ in H2O2/Cu2+- and BPO/Cu2+-dependent peroxidation. 6. It is suggested that eugenol inhibits formation of hydroxyl radicals.  相似文献   

20.
The inhibition by citrinin (CTN) of lipid peroxidation of mitochondria, sub-mitochondrial particles (SMP) and microsomes was studied. This effect was reversed by the presence of high concentrations of Fe3+ (0·4 and 0·5 mM ), suggesting chelation of the mycotoxin with iron or interference in the reduction of Fe3+. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号