首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopaminergic reduction of intracellular calcium: the role of calcium influx   总被引:1,自引:0,他引:1  
The effects of dopamine (DA) on 45Ca2+ ion movement and prolactin release in dispersed female rat anterior pituitary cells were studied to elucidate the mechanism for DA reduction of intracellular calcium levels. In 45Ca2+ prelabeled cells, DA inhibited fractional calcium efflux and prolactin release simultaneously and continuously in a concentration-dependent manner (IC50 20 nM DA). We then studied unidirectional calcium influx and observed haloperidol-reversible, concentration-dependent DA suppression of calcium influx into unlabeled cells. These data complement and extend reported fluorescent dye studies and suggest that dopamine primarily inhibits calcium influx, thereby reducing intracellular calcium levels, which leads to suppression of prolactin release and is manifest secondarily as a reduction in fractional 45Ca2+ efflux.  相似文献   

2.
The 7315a tumour secretes prolactin, but is refractory to enhancement of prolactin release by thyrotrophin-releasing hormone (TRH). In order to investigate further this refractoriness of the 7315a tumour cell, we compared cells from the tumour and from the normal pituitary with regard to TRH-enhanced fractional 45Ca2+ efflux and inositol phosphate production. TRH caused a large efflux of calcium from normal pituitary cells, but only mildly enhanced calcium efflux from the tumour cells. In contrast, TRH enhanced total inositol phosphate generation in both groups of cells to a similar degree. We therefore conclude that prolactin release from 7315a tumour cells is refractory to TRH due, at least in part, to impaired mobilisation of intracellular calcium by inositol phosphates.  相似文献   

3.
Replacing extracellular Na+ with choline transiently increased cytoplasmic free Ca2+ ([Ca2+]i) more than 5-fold in coronary endothelial cells. Removing external Na+ stimulated 45Ca2+ efflux approximately 4-fold and influx approximately 1.7-fold. The stimulation of efflux was independent of extracellular Ca2+ and the osmotic Na+ substitute. The release of stored Ca2+, rather than Ca2+ influx via Na(+)-Ca2+ exchange, probably causes the increase in [Ca2+]i and 45Ca2+ efflux. Cadmium or decreasing external, not intracellular, pH transiently increased [Ca2+]i. Cd2+ and some other divalent metals also stimulated 45Ca2+ efflux. The potency order of the metals that stimulated efflux was Cd2+ greater than CO2+ greater than Ni2+ greater than Fe2+ greater than Mn2+. Incubating the cells with Zn2+ prior to assaying efflux in the absence of Zn2+ strongly inhibited the stimulation of 45Ca2+ efflux by Cd2+, pH 6, and the removal of external Na+ without affecting the stimulation of efflux by ATP. These findings support the hypothesis that certain trace metals or decreasing external Na+ or pH trigger the release of stored Ca2+ by stimulating a cell surface "receptor."  相似文献   

4.
Olivi L  Bressler J 《Cell calcium》2000,27(4):187-193
This study examined the role of calcium channels for the uptake of cadmium (Cd) into Madin-Darby canine kidney (MDCK) cells. Maitotoxin, an activator of different types of calcium channels, increased accumulation of 109Cd and 45Ca in MDCK cells. We found that maitotoxin increased accumulation by stimulating 109Cd influx because it did not affect efflux. An inhibitor of store-operated Ca channels, SKF96365, partially blocked 45Ca influx but did not affect 109Cd influx. Ni and Mn, and loperamide and proadifen (SKF 525a), inhibited 45Ca and 109Cd influx in cells stimulated with maitotoxin, but La and nifedipine did not. Overnight treatment with phorbol 12, 13-ibutyrate (PDBu) to activate protein kinase C resulted in a decrease in the concentration of maitotoxin needed to stimulate 45Ca and 109Cd influx. The effect of PDBu was blocked by treating cells with the protein kinase C inhibitor GF109203X. Additionally, the effect of PDBu was lost in cells treated with an inhibitor of RNA synthesis actinomycin D. These results suggest that a Ca permeable cation channel different from voltage-dependent and store-operated Ca channels mediates the uptake of Cd in MDCK cells. The expression of this channel is regulated by protein kinase C.  相似文献   

5.
We have investigated the unusual observation that depolarization of rat basophilic leukemia cells in high potassium not only fails to induce secretion, but also inhibits the secretion induced when receptors for IgE are aggregated by antigen. Antigen-stimulated 45Ca uptake and the rise in cytoplasmic free ionized calcium measured with the fluorescent indicator quin2 were both inhibited in depolarized cells. 45Ca efflux, on the other hand, was unaffected, which confirms that IgE receptor activation was not impaired in high potassium. Unlike the large increase in total cell calcium seen when cells in normal saline solution were stimulated with antigen, there was a decrease in total cell calcium when depolarized cells were stimulated. This is consistent with our finding that 45Ca uptake was inhibited while 45Ca efflux was unaffected. Inhibition of 45Ca uptake and secretion closely paralleled the decrease in membrane potential, and could be overcome by increasing the extracellular calcium concentration. We conclude that changes in the electrochemical gradient for calcium are important in determining calcium influx and the magnitude of antigen-stimulated secretion from rat basophilic leukemia cells, while the release of calcium from intracellular stores is unaffected.  相似文献   

6.
TRH stimulation of prolactin release from GH3 cells is dependent on Ca2+; however, whether TRH-induced influx of extracellular Ca2+ is required for stimulated secretion remains controversial. We studied prolactin release from cells incubated in medium containing 110 mM K+ and 2 mM EGTA which abolished the electrical and Ca2+ concentration gradients that usually promote Ca2+ influx. TRH caused prolactin release and 45Ca2+ efflux from cells incubated under these conditions. In static incubations, TRH stimulated prolactin secretion from 11.4 +/- 1.2 to 19 +/- 1.8 ng/ml in control incubations and from 3.2 +/- 0.6 to 6.2 +/- 0.8 ng/ml from cells incubated in medium with 120 mM K+ and 2 mM EGTA. We conclude that Ca2+ influx is not required for TRH stimulation of prolactin release from GH3 cells.  相似文献   

7.
Forskolin, 1 microM, increased acetylcholine (ACh)-stimulated 45Ca uptake by chromaffin cells. The stimulatory effects of forskolin decreased with increasing concentration of ACh. The attenuation of the effect of forskolin on 45Ca uptake as a function of ACh concentration correlated well with changes in the forskolin effect on ACh-evoked catecholamine (CA) release. Forskolin increased excess KCl- and veratrine-evoked CA release and 45Ca uptake. Forskolin by itself stimulated 45Ca efflux and enhanced ACh-, excess KCl-, and veratrine-stimulated 45Ca efflux. High doses of forskolin inhibited both ACh-evoked 45Ca uptake and CA release. The inhibitory action of forskolin was specific to receptor-mediated response because excess KCl- and veratrine-stimulated 45Ca uptake and CA release were not inhibited. Forskolin, 0.3-30 microM, dose-dependently increased caffeine-stimulated CA release and 45Ca efflux in the absence of Ca2+ in the medium, and the effects were mimicked by dibutyryl cyclic AMP. These results suggest that cyclic AMP increases stimulation-induced CA release by enhancing calcium uptake across the plasma membrane and/or altering calcium flux in an intracellular calcium store.  相似文献   

8.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

9.
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells.  相似文献   

10.
Regulation of cellular Ca2+ movements by alpha 1-adrenergic receptors has been studied using 45Ca2+ flux techniques in monolayer cultures of intact BC3H-1 cells. Unidirectional 45Ca2+ efflux from BC3H-1 cells reveals multiphasic kinetics, with a major fraction of cellular Ca2+ residing in a slowly exchanging intracellular compartment. Stimulation of alpha 1-adrenergic receptors by the agonist phenylephrine substantially increases 45Ca2+ unidirectional efflux, accompanied by a far smaller increase in 45Ca2+ influx. The selective enhancement of 45Ca2+ unidirectional efflux upon alpha 1-adrenergic receptor activation results in a net 30-40% decline in total cell Ca2+ content, measured either by radioisotopic equilibrium techniques or by atomic absorption spectroscopy. The relatively large pool of Ca2+ responsive to alpha-adrenergic stimulation is not displaced by La3+ but can be depleted with the Ca2+ ionophore A-23187. These results indicate that alpha 1-adrenergic receptor activation predominantly mobilizes Ca2+ from intracellular stores, together with a much smaller increase in transmembrane Ca2+ permeability. This interpretation is supported by comparative 45Ca2+ flux studies using a sister clone of BC3H-1 cells possessing surface nicotinic acetylcholine receptors but no alpha 1-adrenergic receptors. Agonist stimulation of the cholinergic receptor opens a well characterized transmembrane ion permeability gate. Cholinergic receptor activation greatly enhances the observed 45Ca2+ unidirectional influx relative to efflux, leading to net elevation of cellular Ca2+ content as Ca2+ moves down its inwardly directed concentration gradient.  相似文献   

11.
We examined the role of the monovalent cations Na+ and K+ in the events encompassing the release of O-2 by alveolar macrophages after stimulation with formyl methionyl phenylalanine (FMP). This was accomplished by determining the effect of changing the extracellular [Na+] and/or [K+] on FMP-stimulated O-2 production; and measuring 22Na+, 42K+ and 86Rb+ influx and efflux and intracellular [K+] for control and FMP-stimulated alveolar macrophages. Stimulated O-2 production was relatively insensitive to changes in extracellular K+ or Na+ concentrations until the [Na+] was decreased below 35 mM. At 4 mM [Na+], the rate of O-2 production remained at 75% of the maximal rate observed at physiological concentrations of [Na+]. Both influx and efflux of 22Na+ were stimulated above control rates by FMP. The increased rates of fluxes lasted for a few minutes suggesting a transient increase in membrane permeability to Na+. Ouabain partially inhibited 22Na+ efflux but had no effect on O-2 release. The influx of 86Rb+ and 42K+ was not altered by the addition of FMP but was virtually abolished in the presence of 10 microM ouabain or 1 mM quinine. In the presence of extracellular calcium, FMP-stimulated a prolonged (greater than 20 minutes) increase in 86Rb+ or 42K+ efflux which was inhibitable by 1 mM quinine. In the absence of extracellular calcium, FMP stimulation of K+ efflux was greatly diminished and was not affected by quinine, although quinine still inhibited O-2 production under these conditions. It was also observed that there was a loss of intracellular K+ when cells were stimulated by FMP in the presence of Ca+2, but not in the absence of Ca+2. Taken together, these results suggest a minimal direct role, if any, for K+ in the events that lead to FMP-stimulated O-2 release by alveolar macrophages.  相似文献   

12.
Calcium uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles in phosphate-containing media exhibits time-dependent changes that arise from changing rates of calcium influx and efflux. The monovalent cation ionophore gramicidin, added before the start of the calcium uptake reaction, delayed the spontaneous calcium release that normally occurred after approx. 6 min in such reactions; the rate of calcium efflux was inhibited while calcium influx was little affected. Under these conditions, Ca2+-activated ATPase activity could remain unaltered. Gramicidin stimulated calcium uptake irrespective of the presence of a K+ gradient across the vesicle membrane. Valinomycin stimulated calcium uptake in a manner similar to that for gramicidin even in an NaCl-containing medium lacking potassium. Thus, dissipation of a transmembrane K+ gradient is unlikely to account for the effects of these ionophores on the spontaneous changes in calcium flux rates. Addition of gramicidin to partially calcium-filled vesicles inhibited the phase of spontaneous calcium reuptake because both calcium influx and efflux wre inhibited. Addition of gramicidin to partially calcium-filled vesicles in the presence of a water-soluble protein, such as bovine serum albumin, creatine kinase or pyruvate kinase, markedly stimulated calcium uptake. This stimulatory effect was due primarily to inhibition of calcium efflux, calcium influx being minimally influenced by the ionophore. After cleavage of the 100,000 dalton ATPase to 50,000 dalton fragments, which was not associated with changes in Ca2+-activated ATPase activity or initial calcium uptake rate, gramicidin increased rather than decreased calcium content when added to vesicles after the initial maximum in calcium content. Thus, the ability of monovalent cation ionophores to block calcium efflux from calcium-filled vesicles may reflect their interaction with a portion of the Ca2+-activated ATPase protein.  相似文献   

13.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

14.
The effects of guanine nucleotides and protein kinase C on prolactin-stimulated Ca2+ release from intracellular stores of pig oocytes were studied using the fluorescent dye chlorotetracycline. The effect of prolactin was related to the protein kinase C activation. Inhibition of protein kinase C stimulated Ca2+ release from intracellular stores of the pig oocytes treated with 5 ng/ml prolactin in the presence of extracellular Ca2+ and inhibited Ca2+ release from intracellular stores of the pig oocytes treated with 50 ng/ml prolactin. In a Ca2+-free medium, prolactin did not stimulate Ca2+ release from intracellular stores of the oocytes treated with GDP in the presence of GDP. GTP inhibition of protein kinase C activated Ca2+ release from intracellular stores of the pig oocytes treated with 5 ng/ml prolactin and inhibited Ca2+ release from intracellular stores of the pig oocytes treated with 50 ng/ml prolactin. These data suggest the influence of guanine nucleotides and protein kinase C on calcium metabolism, stimulated by prolactin.  相似文献   

15.
The mechanisms whereby activation of the cyclic AMP-dependent protein kinase A or the Ca2+-phospholipid-dependent protein kinase C amplifies insulin release were studied with mouse islets. Forskolin and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) were used to stimulate adenylate cyclase and protein kinase C respectively. The sulphonylurea tolbutamide was used to initiate insulin release in the presence of 3 mM-glucose. Tolbutamide alone inhibited 86Rb+ efflux, depolarized beta-cell membrane, triggered electrical activity, accelerated 45Ca2+ influx and efflux and stimulated insulin release. Forskolin alone only slightly inhibited 86Rb+ efflux, but markedly increased the effects of tolbutamide on electrical activity, 45Ca2+ influx and efflux, and insulin release. In the absence of Ca2+, only the inhibition of 86Rb+ efflux persisted. TPA (100 nM) alone slightly accelerated 45Ca2+ efflux and insulin release without affecting 45Ca2+ influx or beta-cell membrane potential. It increased the effects of tolbutamide on 45Ca2+ efflux and insulin release without changing 86Rb+ efflux, 45Ca2+ influx or electrical activity. Omission of extracellular Ca2+ suppressed all effects due to the combination of TPA and tolbutamide, but not those of TPA alone. Though ineffective alone, 10 nM-TPA amplified the releasing action of tolbutamide without affecting its ionic and electrical effects. In conclusion, the two amplification systems of insulin release involve at least partially distinct mechanisms. The cyclic AMP but not the protein kinase C system initiating signal (Ca2+ influx) triggered by the primary secretagogue.  相似文献   

16.
Conflicting evidence has been reported regarding the role of endothelin-1, a potent vasconstrictor peptide, in stimulating extracellular calcium influx in rabbit vascular smooth muscle. The objective of this study was to elucidate the effects of endothelin-1 on transmembrane 45Ca2+ influx and intracellular calcium mobilization in cultured rabbit aortic smooth muscle cells. In calcium containing buffer, endothelin-1 induced a concentration-dependent 45Ca2+ efflux response over the range of 10 pM to 100 nM with an EC50 of approximately 60 pM. Maximum endothelin-stimulated 45Ca2+ efflux was not affected by the absence of extracellular calcium or the presence of 1 microM verapamil. Endothelin-1 did not induce transplasmalemmal 45Ca2+ uptake at times up to 30 min. These findings suggest that an alteration in intracellular calcium handling, rather than extracellular calcium influx, is responsible for the endothelin-stimulated increase in intracellular calcium concentration in rabbit aortic smooth muscle cells.  相似文献   

17.
The presence of dopamine-containing cells in sympathetic ganglia, i.e., small, intensely fluorescent cells, has been known for some time. However, the role of dopamine as a peripheral neurotransmitter and its mechanism of action are not well understood. Previous studies have demonstrated the presence of D2 dopamine receptors on the surface of bovine adrenal chromaffin cells using radioligand binding methods and dopamine receptor inhibition of catecholamine release from perfused adrenal glands. In the present study, we provide evidence confirming a role of dopamine receptors as inhibitory modulators of adrenal catecholamine release from bovine chromaffin cell cultures and further show that the mechanism of modulation involves inhibition of stimulated calcium uptake. Apomorphine gave a dose-dependent inhibition (IC50 = 1 microM) of 45Ca2+ uptake stimulated by either nicotine (10 microM) or membrane depolarization with an elevated K+ level (60 mM). This inhibition was reversed by a series of specific (including stereospecific) dopamine receptor antagonists: haloperidol, spiperone, sulpiride, and (+)-butaclamol, but not (-)-butaclamol. In addition, the calcium channel agonist Bay K 8644 was used to stimulate uptake of 45Ca2+ into chromaffin cells, and this uptake was also inhibited by the dopamine receptor agonist apomorphine. The combined results suggest that dopamine receptors on adrenal chromaffin cells alter Ca2+ channel conductance, which, in turn, modulates catecholamine release.  相似文献   

18.
Extracellular ATP (1 mM) inhibited the growth of Friend virus-infected murine erythroleukemia cells (MEL cells) but had no effect on dimethyl sulfoxide-induced differentiation. ATP (1 mM) also caused changes in the permeability of MEL cells to ions. There was an increased influx of 45Ca2+ from a basal level of 5 pmol/min to 18 pmol/min/10(6) cells to achieve a 2-fold increase in steady-state Ca2+ as measured at isotopic equilibration. Ca2+ influx was blocked by diisothiocyanostilbene disulfonate (DIDS), an inhibitor of anion transport. ATP also stimulated Cl- uptake, and this flux was inhibited by DIDS. The ratio of ATP stimulated Cl- to Ca2+ uptake was 1.6:1. K+ and Na+ influx were also stimulated by ATP, but phosphate uptake was inhibited; the Na+ influx dissipated the Na+ gradient and thus inhibited nutrient uptake. ATP-stimulated K+ influx was ouabain inhibitable; however, the total cellular K+ decreased due to an ATP-stimulated ouabain-resistant K+ efflux. Na+ influx and Ca2+ influx occurred by separate independent routes, since Na+ influx was not inhibited by DIDS. The effects observed were specific for ATP *K1/2 MgATP = 0.7 mM) since AMP, GTP, adenosine, and the slowly hydrolyzable ATP analogue adenyl-5'-yl imidodiphosphate were without effect. The major ionic changes in the cell were a decrease in K+ and increase in Na+; cytoplasmic pH and free Ca2+ did not change appreciably. These ATP-induced changes in ion flux are considered to be responsible for growth inhibition.  相似文献   

19.
Beta adrenergic agonists, tetradecanoylphorbol acetate, and the ionophore A23187 all stimulate surfactant secretion in type II cells isolated from rats. We found that combinations of these agonists cause augmented secretion, suggesting that the agonists may effect different steps in the secretory process. Previous studies have shown that cAMP is likely to be an intracellular 'second messenger' in type II cells. A23187, which has been reported to increase cAMP in some cell systems, did not increase the cAMP content of type II cells. We investigated the possible role of Ca2+ as another 'second messenger' by studying cellular 45Ca fluxes and the effect of extracellular calcium depletion on secretion. Depletion of extracellular calcium for as long as 3 h did not alter stimulated secretion, although basal secretion was increased. Secretagogues did not stimulate 45Ca influx from extracellular sources. A23187 and, to a lesser extent, terbutaline caused an acceleration of 45Ca efflux from type II cells. The addition of terbutaline or tetradecanoylphorbol acetate to A23187 further accelerated 45Ca efflux, suggesting that these agonists may act on separate calcium pools or by different mechanisms on the same calcium pool. Although secretion from type II cells is not inhibited by extracellular calcium depletion, the studies on 45Ca efflux suggest that Ca2+ plays a role in the regulation of surfactant secretion from isolated type II cells.  相似文献   

20.
Rat anterior pituitary cells, loaded with the calcium indicator dye fura-2 after primary culture, were challenged with prolactin and growth hormone secretagogues and inhibitory hormones. To initially validate the technique, the calcium channel activator maitotoxin effectively increased intracellular free calcium [( Ca++]i). Various concentrations of the secretagogues thyrotropin releasing hormone or angiotensin II induced peak increases in [Ca++]i within 15 sec, followed by a lower and prolonged plateau phase. The inhibitory hormones dopamine and somatostatin maximally reduced [Ca++]i by 15-20 sec, followed by a spontaneous return to baseline over 5-10 min. The receptor antagonists saralacin and spiperone blocked the angiotensin II and dopamine effects, respectively. Thus, fura-2 appears to be an adequate probe for resolving second-to-second changes in [Ca++]i induced by hormone receptor activation in anterior pituitary cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号