首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du X  Pène JJ 《Nucleic acids research》1999,27(7):1690-1697
Although the G+C content of Thermus aquaticus YT-1 chromosomal DNA is 67.4%, regions with lower G+C content have also been observed. AT-rich DNA-binding proteins may contribute to the thermostability and biological functions of these DNA regions at Thermus growth temperatures. Using double-stranded DNA (dsDNA)-cellulose chromatography, a T.aquaticus YT-1 protein, designated as p25, was identified to bind preferentially to AT-rich DNA. The gene encoding p25 was cloned and sequenced after immunoscreening T.aquaticus YT-1 expression libraries. The deduced primary structure of p25 is 211 amino acids in length with a molecular weight of 23 225 Da. Native p25 was purified and characterized as a homodimer with modification possibly at lysine and arginine residues. Its preferential and temperature-dependent binding to AT-rich DNA was confirmed with mobility-shift DNA-binding assays. The protein was demonstrated to bind preferentially to dsDNA instead of single-stranded DNA. The binding of p25 to dsDNA also improved the thermotolerence of this protein. Overexpression study of fusion p25 suggested that the N-terminus of the protein might form the DNA-binding domain or be closely involved in DNA-binding activity.  相似文献   

2.
In this study, we have investigated the influence of regions outside the DNA-binding domain of the human glucocorticoid receptor on high-affinity DNA binding. We find that the DNA-binding domain shows a 10-fold lower affinity for a palindromic DNA-binding site than the intact receptor. The N-terminal part of the receptor protein does not influence its DNA-binding affinity, while the C-terminal steroid-binding domain increases the DNA-binding affinity of the receptor molecule. It has previously been shown that both the intact glucocorticoid receptor and the glucocorticoid receptor DNA-binding domain bind to a palindromic glucocorticoid response element on DNA as dimers. It is likely that differences in DNA-binding affinity observed result from protein-protein interactions outside the DNA-binding domain between receptor monomers, as has been shown for the estrogen receptor. We have previously identified a segment involved in protein-protein interactions between DNA-binding domains of glucocorticoid receptors. This, in combination with results presented in this study, suggests that there are at least two sites of contact between receptor monomers bound to DNA. We suggest that the interaction between the DNA-binding domains may act primarily to restrict DNA binding to binding sites with appropriate half-site spacing and that additional stability of the receptor dimer is provided by the interactions between the steroid-binding domains.  相似文献   

3.
DNA-binding proteins have been extracted from the thermoacidophilic archaebacterium Sulfolobus solfataricus strain P1, grown at 86 degrees C and pH 4.5. These proteins, which may have a histone-like function, were isolated and purified under standard, non-denaturing conditions, and can be grouped into three molecular mass classes of 7, 8 and 10 kDa. We have purified to homogenity the main 7 kDa protein and determined its DNA-binding affinity by filter binding assays and electron microscopy. The Stokes radius of gyration indicates that the protein occurs as a monomer. The complete amino-acid sequence of this protein contains 14 lysine residues out of 63 amino acids and the calculated Mr is 7149. Five of the lysine residues are partially monomethylated to varying extents and the methylated residues are located exclusively in the N-terminal (positions 4 and 6) and the C-terminal (positions 60, 62 and 63) regions only. The protein is strongly homologous to the 7 kDa proteins of Sulfolobus acidocaldarius with the highest homology to protein 7d. Accordingly, the name of this protein from S. solfataricus was assigned as DNA-binding protein Sso7d.  相似文献   

4.
Pot1 is a single-stranded-DNA-binding protein that recognizes telomeric G-strand DNA. It is essential for telomere capping in Saccharomyces pombe and regulates telomere length in humans. Human Pot1 also interacts with proteins that bind the duplex region of the telomeric tract. Thus, like Cdc13 from S. cerevisiae, Pot 1 may have multiple roles at the telomere. We show here that endogenous chicken Pot1 (cPot1) is present at telomeres during periods of the cell cycle when t loops are thought to be present. Since cPot1 can bind internal loops and directly adjacent DNA-binding sites, it is likely to fully coat and protect both G-strand overhangs and the displaced G strand of a t loop. The minimum binding site of cPot1 is double that of the S. pombe DNA-binding domain. Although cPot can self associate, dimerization is not required for DNA binding and hence does not explain the binding-site duplication. Instead, the DNA-binding domain appears to be extended to contain a second binding motif in addition to the conserved oligonucleotide-oligosaccharide (OB) fold present in other G-strand-binding proteins. This second motif could be another OB fold. Although dimerization is inefficient in vitro, it may be regulated in vivo and could promote association with other telomere proteins and/or telomere compaction.  相似文献   

5.
6.
7.
We have developed and tested a systematic method for the location and statistical evaluation of potential DNA-binding regions of the lambda Cro type in protein sequences. Using this approach to examine proteins expected to contain such regions, we have been able to compile a statistically homogeneous master set of 37 lambda Cro-like DNA-binding domains. Examination of a protein database revealed other prokaryotic proteins that are similar to this lambda Cro-like group. There are also many DNA-binding proteins that are not found to be significantly similar to the lambda Cro group, consistent with previous suggestions that different types of protein sequence may be able to achieve a similar mode of binding and that there exist other modes of sequence-specific DNA-binding. A useful feature of the method is that it can be applied without a computer.  相似文献   

8.
We have previously prepared human anti-double-stranded (ds) DNA IgG Fab clones using phage-display technology. Nucleotide sequence analysis of genes of immunoglobulin (Ig) heavy and light chain variable regions in these Fab clones suggested that the DNA-binding activity of the clones depended on light chain usage. To confirm the role of the light chain in antibody binding to DNA, we constructed in the present study's new recombined Fab clones by heavy and light chain shuffling between the original anti-dsDNA Fab clones. Clones constructed by pairing Fdgamma fragments with the light chain from a high DNA-binding clone showed high DNA-binding activities, whereas other constructed clones using light chains from low DNA-binding clones showed low DNA-binding activities. Our results indicate that light chains in anti-dsDNA antibodies can determine the DNA-binding activity of the antibodies. Ig chain shuffling of phage-display antibodies may be useful for investigating the molecular mechanisms for antigen-antibody binding of human autoantibodies.  相似文献   

9.
Using a simple oligo selection procedure, we have previously identified a tobacco sequence-specific DNA-binding activity, TDBA12, that increases markedly during the tobacco mosaic virus (TMV)-induced hypersensitive response (HR). Based on the binding specificity and the two cDNA clones isolated, TDBA12 is related to a novel class of DNA-binding factors containing WRKY domains. In the present study, we report that TDBA12 could be induced not only by TMV infection but also by treatment with salicylic acid (SA) or its biologically active analogs capable of inducing pathogenesis-related (PR) genes and enhanced resistance. TDBA12 was sensitive to temperature and the protein dissociating agent sodium deoxycholate, suggesting that it may be a multimeric factor in which protein–protein interaction is important for the enhanced DNA-binding activity. Pre-treatment of nuclear extracts with alkaline phosphatase abolished TDBA12, suggesting that protein phosphorylation is important for its high DNA-binding activity. TDBA12 specifically recognized the elicitor response element of the tobacco class I basic chitinase gene promoter. The increase in the levels of TDBA12 following TMV infection or SA treatment preceded the induced expression of the tobacco chitinase gene. These results strongly suggest that certain WRKY DNA-binding proteins may be activated by enhanced protein phosphorylation and regulate inducible expression of defense-related genes during pathogen- and SA-induced plant defense responses.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The proteins Ku70 (69.8 kDa) and Ku80 (82.7 kDa) form a heterodimeric complex that is an essential component of the nonhomologous end joining DNA double-strand break repair pathway in mammalian cells. Interaction of Ku with DNA is central for the functions of Ku. Ku70, which is mainly responsible for the DNA binding activity of the Ku heterodimer, contains two DNA-binding domains. We have solved the solution structure of the Ku80-independent DNA-binding domain of Ku70 encompassing residues 536-609 using nuclear magnetic resonance spectroscopy. Residues 536-560 are highly flexible and have a random structure but form specific interactions with DNA. Residues 561-609 of Ku70 form a well defined structure with 3 alpha-helices and also interact with DNA. The three-dimensional structure indicates that all conserved hydrophobic residues are in the hydrophobic core and therefore may be important for structural integrity. Most of the conserved positively charged residues are likely to be critical for DNA recognition. The C-terminal DNA-binding domain of Ku70 contains a helix-extended strand-helix motif, which occurs in other nucleic acid-binding proteins and may represent a common nucleic acid binding motif.  相似文献   

18.
19.
Homeodomain proteins are a highly conserved class of DNA-binding proteins that are found in virtually every eukaryotic organism. The conserved mechanism that these proteins use to bind DNA suggests that there may be at least a partial DNA recognition code for this class of proteins. To test this idea, we have investigated the sequence-specific requirements for DNA binding and repression by the yeast alpha2 homeodomain protein in association with its cofactors, Mcm1 and Mata1. We have determined the contribution for each residue in the alpha2 homeodomain that contacts the DNA in the co-crystal structures of the protein. We have also engineered mutants in the alpha2 homeodomain to alter the DNA-binding specificity of the protein. Although we were unable to change the specificity of alpha2 by making substitutions at residues 47, 54, and 55, we were able to alter the DNA-binding specificity by making substitutions at residue 50 in the homeodomain. Since other homeodomain proteins show similar changes in specificity with substitutions at residue 50, this suggests that there is at least a partial DNA recognition code at this position.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号