首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method based on PCR-restriction fragment length polymorphism analysis (PRA) using a novel region of the hsp65 gene was developed for the rapid and exact identification of mycobacteria to the species level. A 644 bp region of hsp65 in 62 mycobacteria reference strains, and 4 related bacterial strains were amplified, and the amplified DNAs were subsequently digested with restriction enzymes, namely, AvaII, HphI, and HpaII. Most of the mycobacteria species were easily differentiated at the species level by the developed method. In particular, the method enabled the separation of M. avium, M. intracellulare and M. tuberculosis to the species level by AvaII digestion alone. An algorithm was constructed based on the results and a blind test was successfully performed on 251 clinical isolates, which had been characterized by conventional biochemical testing. Our results suggest that this novel PRA offers a simple, rapid, and accurate method for the identification of mycobacteria culture isolates at the species level.  相似文献   

2.
Traditional identification of mycobacteria based on cultural and biochemical tests can take several weeks and may fail to provide a precise identification. Polymerase Chain Reaction-Restriction Enzyme Analysis (PRA) of the gene encoding heat shock protein 65 kDa (hsp65) gene has been proposed as a rapid and inexpensive alternative approach. Despite being widely used for differentiation of mammalian mycobacteria, this method has only been applied in the identification of a small number of aquatic mycobacteria. The present study aimed to evaluate the potential use of PRA of hsp65 for the identification of aquatic mycobacteria compared with sequence analysis. Seventy one mycobacterial isolates including, 10 type/reference strains and the remainder field isolates, were subjected to PRA of a 441 bp fragment of this gene. For 68 representative isolates, sequence analysis was performed. All rapidly and slowly growing mycobacteria had best matches with 99.3% to 100% similarity with their corresponding species in the databanks. PRA proved to be a simple and rapid method for identifying aquatic mycobacteria. However, the incidence of similar or identical restriction patterns for some species of mycobacteria, and in particular, identification of new species of mycobacteria is a major problem using such a method. In contrast, the nucleic acid sequencing of the hsp65 gene yielded unambiguous results.  相似文献   

3.
Tuberculosis (TB) is a major cause of morbidity and mortality worldwide. One hundred and nineteen acid-fast bacilli-positive smears for Mycobacterium Growth Indicator Tube cultures from 119 patients were examined by microscopy for the presence of cord formation. The results were compared with those of the traditional TB identification method, IS6110 polymerase chain reaction (PCR) , and the Capilia TB assay which uses a monoclonal antibody to identify. With the traditional TB identification method, 57 of these 119 specimens were determined to be positive for Mycobacterium tuberculosis complex, and the organisms in the remaining 62 specimens were identified as non-tuberculosis mycobacteria (NTM). Both IS6110 PCR and the Capilia TB assay yielded results identical to those of the traditional method with 57 true TB and 62 NTM. For the cord formation assay, all 62 NTM cultures were negative, but 54 of the 57 true TB cultures were positive. Therefore, the cord formation method had a sensitivity of 94.74% (54/57), specificity of 100% (62/62), negative predictive value of 95.38% (62/65) and positive predictive value of 100% (54/54) for identification of M. tuberculosis complex. The cord formation method is less expensive and 3–5 weeks quicker than the biochemical tests in the identification of M. tuberculosis.

PRACTICAL APPLICATIONS


Due to the slow growth of Mycobacterium tuberculosis bacilli, delays in the detection of TB infection may occur in clinical TB laboratories when only conventional methods for recovery of mycobacteria are used. This problem can be supported by other techniques, such as cord formation in Kinyoun-stained smears of Mycobacterium Growth Indicator Tube cultures and molecular biology-based systems, which can be used in combination to obtain accurate results in a much shorter period of time.  相似文献   

4.
Evidence suggests that insertion of the IS6110 element is not without consequence to the biology of Mycobacterium tuberculosis complex strains. Thus, mapping of multiple IS6110 insertion sites in the genome of biomedically relevant clinical isolates would result in a better understanding of the role of this mobile element, particularly with regard to transmission, adaptability and virulence. In the present paper, we describe a versatile strategy, referred to as GL-PCR, that amplifies IS6110-flanking sequences based on the construction of a genomic library. M. tuberculosis chromosomal DNA is fully digested with HincII and then ligated into a plasmid vector between T7 and T3 promoter sequences. The ligation reaction product is transformed into Escherichia coli and selective PCR amplification targeting both 5' and 3' IS6110-flanking sequences are performed on the plasmid library DNA. For this purpose, four separate PCR reactions are performed, each combining an outward primer specific for one IS6110 end with either T7 or T3 primer. Determination of the nucleotide sequence of the PCR products generated from a single ligation reaction allowed mapping of 21 out of the 24 IS6110 copies of two 12 banded M. tuberculosis strains, yielding an overall sensitivity of 87,5%. Furthermore, by simply comparing the migration pattern of GL-PCR-generated products, the strategy proved to be as valuable as IS6110 RFLP for molecular typing of M. tuberculosis complex strains. Importantly, GL-PCR was able to discriminate between strains differing by a single IS6110 band.  相似文献   

5.
A fast, sensitive and cost-effective multiplex-PCR assay for Mycobacterium tuberculosis complex (MTC) and Mycobacterium avium (M. avium) identification for routine diagnosis was evaluated. A total of 158 isolates of mycobacteria from 448 clinical specimens from patients with symptoms of mycobacterial disease were analyzed. By conventional biochemical methods 151 isolates were identified as M. tuberculosis, five as M. avium and two as Mycobacterium chelonae (M. chelonae). Mycolic acid patterns confirmed these results. Multiplex-PCR detected only IS6110 in isolates identified as MTC, and IS1245 was found only in the M. avium isolates. The method applied to isolates from two patients, identified by conventional methods and mycolic acid analysis, one as M. avium and other as M. chelonae, resulted positive for IS6110, suggesting co-infection with M. tuberculosis. These patients were successfully submitted to tuberculosis treatment. The multiplex-PCR method may offer expeditious identification of MTC and M. avium, which may minimize risks for active transmission of these organisms and provide useful treatment information.  相似文献   

6.
The IS6110 belongs to the family of insertion sequences (IS) of the IS3 category. This insertion sequence was reported to be specific for Mycobacterium tuberculosis complex and hence is extensively exploited for laboratory detection of the agent of tuberculosis and for epidemiological investigations based on polymerase chain reaction. IS6110 is 1361-bp long and within this sequence different regions have been utilized as targets in the identification of M. tuberculosis by PCR. However, the results are not always consistent, specific and sensitive. In recent years, a few clinical investigations raised concerns over IS6110 specificity and sensitivity in the diagnosis of tuberculosis due to false-positive (homology with other target DNA besides M. tuberculosis) or false negative (due to absence of copies of IS6110) results with IS6110 specific primers. To unravel the variations in IS6110 sequences, an insilico analysis of IS6110 sequence of different strains of M. tuberculosis was carried out. Our results of comparative analysis of IS6110 insertion sequences of M. tuberculosis complex suggests that, IS6110 insertion sequences harbored variations in its sequence, which is evident from the phylogenetic analysis. Importantly, IS6110 sequence has divergence within the copies of same strain and formed different clusters. A list of IS6110 specific primers used in various clinical investigation of tuberculosis was obtained from the literature and their performance scrutinized. Our study emphasizes the need to develop PCR assays (multiplex format) targeting more than one region of the genome of M. tuberculosis.  相似文献   

7.
The genus Mycobacterium contains more than 150 species. Non-tuberculosis mycobacteria (NTM) often cause extrapulmonary and pulmonary disease. Mycobacteria detection at species level is necessary and provides useful information on epidemiology and facilitates successful treatment of patients. This retrospective study aimed to determine the incidence of the NTM isolates and Mycobacterium tuberculosis (Mtb) in clinical specimens collected from Iranian patients during February 2011–December 2013, by PCR–restriction fragment length polymorphism analysis (PRA) of the hsp65 gene. We applied conventional biochemical test and hsp65–PRA identification assay to identify species of mycobacteria in specimens from patients suspected of having mycobacterial isolates. This method was a sensitive, specific and effective assay for detecting mycobacterial species and had a 100% sensitivity and specificity for Mtb and Mycobacterium avium complex (MAC) species. Using PRA for 380 mycobacterial selected isolates, including 317 Mtb, four Mycobacterium bovis and of the 59 clinical isolates, the most commonly identified organism was Mycobacterium kansasii (35.6%), followed by Mycobacterium simiae (16.9%), Mycobacterium gordonae (16.9%), Mycobacterium fortuitum (5.1%), Mycobacterium intracellulare (5.1%), Mycobacterium avium (5.1%), Mycobacterium scrofulaceum (3.4%), Mycobacterium gastri (3.4%), Mycobacterium flavescens (3.4%), Mycobacterium chelonae (3.4%) and Mycobacterium nonchromogenicum (1.7%). PRA method, in comparison with classical methods, is rapid, useful and sensitive for the phylogenetic analysis and species detection of mycobacterial strains. Mycobacterium kansasii is the most common cause of infection by NTM in patients with non-HIV and HIV which demonstrated a high outbreak and diversity of NTM strains in our laboratory.  相似文献   

8.

Background

Nucleic acid amplification tests are increasingly used for the rapid diagnosis of tuberculosis. We undertook a comparative study of the efficiency and diagnostic yield of a real-time PCR senX3-regX3 based assay versus the classical IS6110 target and the new commercial methods.

Methods

This single-blind prospective comparative study included 145 consecutive samples: 76 from patients with culture-confirmed tuberculosis (86.8% pulmonary and 13.2% extrapulmonary tuberculosis: 48.7% smear-positive and 51.3% smear-negative) and 69 control samples (24 from patients diagnosed with non-tuberculous mycobacteria infections and 45 from patients with suspected tuberculosis which was eventually ruled out). All samples were tested by two CE-marked assays (Xpert®MTB/RIF and AnyplexTM plus MTB/NTM) and two in-house assays targeting senX3-regX3 and the IS6110 gene.

Results

The detection limit ranged from 1.00E+01 fg for Anyplex, senX3-regX3 and IS6110 to 1.00E+04 fg for Xpert. All three Xpert, senX3-regX3 and IS6110 assays detected all 37 smear-positive cases. Conversely, Anyplex was positive in 34 (91.9%) smear-positive cases. In patients with smear-negative tuberculosis, differences were observed between the assays; Xpert detected 22 (56.41%) of the 39 smear-negative samples, Anyplex 24 (61.53%), senX3-regX3 28 (71.79%) and IS6110 35 (89.74%). Xpert and senX3-regX3 were negative in all control samples; however, the false positive rate was 8.7% and 13% for Anyplex and IS6110, respectively. The overall sensitivity was 77.6%, 85.7%, 77.3% and 94.7% and the specificity was 100%, 100%, 90.8% and 87.0% for the Xpert, senX3-regX3, Anyplex and IS6110 assays, respectively.

Conclusion

Real-time PCR assays targeting IS6110 lack the desired specificity. The Xpert MTB/RIF and in-house senX3-regX3 assays are both sensitive and specific for the detection of MTBC in both pulmonary and extrapulmonary samples. Therefore, the real time PCR senX3-regX3 based assay could be a useful and complementary tool in the diagnosis of tuberculosis.  相似文献   

9.
ABSTRACT: BACKGROUND: Mycobacteria can be quickly and simply identified by PCR restriction-enzyme analysis (PRA), but misidentification can occur because of similarities in band sizes that are critical for discriminating among species. Capillary electrophoresis can provide computer-aided band discrimination. The aim of this research was to develop an algorithm for identifying mycobacteria by combined rpoB duplex PRA (DPRA) and hsp65 PRA with capillary electrophoresis. RESULTS: Three hundred and seventy-six acid-fast bacillus smear-positive BACTEC cultures, including 200 Mycobacterium tuberculosis complexes (MTC) and 176 non-tuberculous mycobacteria (NTM) were analyzed. With combined hsp65 and rpoB DPRA, the accuracy rate was 100 % (200 isolates) for the MTC and 91.4 % (161 isolates) for the NTM. Among the discordant results (8.6 %) for the NTM, one isolate of Mycobacterial species and the an isolate of M. flavescens were found as new sub-types in hsp65 PRA. CONCLUSIONS: This effective and novel identification algorithm using combined rpoB DPRA and hsp65 PRA with capillary electrophoresis can rapidly identify mycobacteria and find new sub-types in hsp65 PRA. In addition, it is complementary to 16S rDNA sequencing.  相似文献   

10.
Tuberculosis is an under-recognized yet catastrophic health problem, particularly in developing countries. The HIV pandemic has served to increase the number of susceptible individuals, and multidrug-resistance and poor socioeconomic conditions also augment the prevalence and the consequences of the disease. To control the disease and its spread, it is vital that tuberculosis diagnostics are accurate and rapid. Whereas microscopy and culture have several limitations (low sensitivity is a problem for the former, while the latter has a delayed turnaround time), PCR-based techniques targeting regions of the Mycobacterium tuberculosis genome such as IS6110 have proved to be useful. The purpose of this review is to assess the use of PCR-RFLP, nested PCR and real-time PCR protocols and the choice of target regions for the detection of M. tuberculosis. Real-time PCR for the detection of M. tuberculosis target genes in clinical specimens has contributed to improving diagnosis and epidemiologic surveillance in the past decade. However, targeting one genome sequence such as IS6110 may not by itself be sufficiently sensitive to reach 100% diagnosis, especially in the case of pulmonary tuberculosis. Additional testing for target genome sequences such as hsp65 seems encouraging. An interesting approach would be a multiplex real-time PCR targeting both IS6110 and hsp65 to achieve comprehensive and specific molecular diagnosis. This technology needs development and adequate field testing before it becomes the acceptable gold standard for diagnosis.  相似文献   

11.
Tuberculosis (TB) continues to be one of the most challenging public health problems in the world. An important contributor to the global burden of the disease is the emergence and spread of drug-resistant and particularly multidrug-resistant Mycobacterium tuberculosis strains (MDR), defined as being resistant to at least isoniazid and rifampicin. In recent years, the introduction of different DNA-based molecular typing methods has substantially improved the knowledge of the epidemiology of TB. The purpose of this study was to employ a combination of two PCR-based genotyping methods, namely spoligotyping and IS6110-Mtb1/Mtb2 PCR to investigate the clonal relatedness of MDR M. tuberculosis clinical isolates recovered from pulmonary TB patients from Poland. Among the 50 isolates examined, 28 (56%) were clustered by spoligotyping, whereas IS6110-Mtb1/Mtb2 PCR resulted in 16 (32%) clustered isolates. The isolates that clustered in both typing methods were assumed to be clonally related. A two-step strategy consisting of spoligotyping as a first-line test, performed on the entire pool of isolates, and IS6110-Mtb1/Mtb2 PCR typing as a confirmatory subtyping method, performed only within spoligotype-defined clusters, is an efficient approach for determining clonal relatedness among M. tuberculosis clinical isolates.  相似文献   

12.
Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.  相似文献   

13.
A multiplex-polymerase chain reaction (PCR) assay, based on one-step amplification and detection of three different mycobacterial genomic fragments, was designed for differentiation between Mycobacterium bovis and Mycobacterium tuberculosis. The oligonucleotide primers were chosen from the gro EL gene, present in the genus Mycobacterium sp., from the IS 6110 insertion sequence, present in Myco. tuberculosis complex and from the mtp 40 gene, identified as a specificspecies Myco. tuberculosis genomic fragment. This amplification method allowed the detection of two fragments of 576 and 317 base pairs in Myco. bovis and three fragments of 576, 396 and 317 base pairs in Myco. tuberculosis strains, including atypical strains of Myco. tuberculosis where the copy number of the IS 6110 element is low. The multiplex-PCR assay described may be a very useful tool for the rapid and specific differentiation of these related mycobacteria and easy to use in medical and veterinary microbiology laboratories.  相似文献   

14.
BACKGROUND: Tuberculous cervicitis (TC) is a rare disease the diagnosis of which is based on the microscopic and/or cultural recognition of mycobacteria. In recent years, the polymerase chain reaction (PCR), especially with double-round amplification ("nested" PCR [nPCR]), has been increasingly used for rapid detection of mycobacteria in clinical samples. CASE: The present case is the first example of tuberculosis diagnosed with the aid of nPCR amplification of mycobacterial DNA fragments on smeared and Papanicolaou-stained cytologic material. First detected on vaginal smears, the amplicon IS6110 was subsequently identified also on paraffin-embedded tissue sections. CONCLUSION: The technique described here could also be applied to aspiration cytology smears to give rapid and accurate information on mycobacterial infections.  相似文献   

15.
The Mycobacterium tuberculosis (MTB) shows different virulence and host infection range from other members of the M. tuberculosis complex (MTBC). Differential identification of MTB from MTBC is thus important in certain occasions. The currently commercially available molecular assays which use either IS6110 or 16S rDNA fragment as identification targets are mainly designed for identifying MTBC but not for MTB. Comparative genomic DNA analysis has provided valuable information on regions of difference (RD) present in MTB but not in other members of the MTBC. RD9 region is further suggested to be a potential target for differential identification of MTB from MTBC. In this study, using IS6110 and Rv3618 (belong to RD9) as the specific identification targets for MTBC and MTB, respectively, we developed and tested a multiplex nested PCR-ICT (immuno-chromatography test) assay for simultaneously and directly detecting not only MTBC but also MTB from 1500 clinical sputum specimens. The results were compared with traditional culture and biochemical identification results together with patients' clinical assessments. This assay showed a 95.5% sensitivity, 97.9% specificity, 2.1% false positive rate and 4.5% false negative rate towards detection of MTBC, and a 93.0% sensitivity, 99.8% specificity, 0.2% false positive rate and 7.0% false negative rate for detection of MTB. This detection system shows great potential in clinical application.  相似文献   

16.
With the emergence of a multidrug resistant tuberculosis (MDR-TB) outbreak, the availability of a rapid typing method to carry out a nationwide prospective survey for the tracking of newly emerging MDR-TB foci became a priority. For this purpose, we have applied the IS6110 PCR-based genotyping assay, namely, LM-PCR (ligation-mediated PCR). The latter relies on ligation of a synthetic oligonucleotide priming site to a restriction site flanking IS6110. Sequences between the IS element and the restriction site are then amplified using an IS6110 specific outward primer and an oligonucleotide specific to the ligated priming site. Although it was found slightly less discriminative than the standard IS6110 restriction fragment length polymorphism analysis (IS6110 RFLP), LM-PCR allowed for the rapid and prospective identification of new outbreak-related cases within a large pool of circulating M. tuberculosis isolates. In comparison to IS6110 RFLP LM-PCR was found simple enough to justify its implementation in laboratories involved in MDR-TB surveillance at a nationwide scale.  相似文献   

17.
A single-step, 5-min lysis method was investigated as a rapid technique to extract genomic DNA from mycobacteria for PCR detection of M. tuberculosis directly from clinical specimens. Of 67 smear-positive clinical specimens, 64 (95.5%) were positive by PCR after this rapid extraction method.  相似文献   

18.
Rapid and sensitive detection of Mycobacterium tuberculosis from patient samples is vital for clinical diagnosis and treatment. The emergence of M. tuberculosis strains with either no copies or only a single copy of IS6110 in Asian countries makes the standard PCR based diagnosis of M. tuberculosis using IS6110 not reliable. We studied the diagnostic efficacy of the in-house PCR amplification of the candidate gene mtp40 as an alternative to IS6110 element based diagnosis. Clinical samples included pulmonary and extra-pulmonary specimens from TB suspected patients residing in Puducherry, South India and were analyzed using in-house PCR procedures targeting IS6110 element and mtp40 genes. Out of 317 clinical specimens analyzed, 132 (41.6 %) and 114 (36 %) were found positive for mtp40 PCR and IS6110 PCR, respectively. However, 18 specimens that were found to negative for IS6110 PCR were found positive for mtp40 PCR, which was further confirmed by DNA sequencing method. PCR amplification of mtp40 gene for the diagnosis of M. tuberculosis in clinical samples is fast, sensitive, and further identified clinical strains that lack IS6110 element in this region. It is clearly demonstrated that there is a significant difference between the two PCR procedures and the sensitivity and specificity levels of mtp40 PCR were found to be higher when compared with DNA sequencing method. Thus, mtp40 based PCR technique will be beneficial in diagnosis of TB where M. tuberculosis strains lack of IS6110 element is predominant.  相似文献   

19.
The standardized method to study the polymorphism of IS 6110 was used to characterize 53 isolates of Mycobacterium tuberculosis obtained during 1991-1992 from 14 regions in Colombia. In Valle region cluster rate was 25% (4/16). The mean number of IS6110 band was 10 +/- 3. Similarity between strains was of 60% in 81% of strains and this tended to be correlated with geographic origin. For the first time M. tuberculosis without IS6110 bands in restriction fragment length polymorphism analysis was found in Colombia. Additional studies are necessaries in order to best characterize the situation in relation to human immunodeficiency virus epidemic and recent changes in tuberculosis control program.  相似文献   

20.
新型Taq Man-MGB探针在结核分枝杆菌实时PCR检测中的应用   总被引:3,自引:0,他引:3  
为建立一种比现有方法敏感、准确性高、重复性好的结核分枝杆菌DNA定性定量检测方法 ,以TaqMan探针技术为基础 ,运用TaqMan MGB探针 ,实时检测临床标本中的结核分枝杆菌DNA .用来自临床标本的DNA及克隆于载体的IS6 1 1 0序列检测所建立方法的有效性 .结果显示 ,所建立方法的最低检测限度为 1个基因拷贝 反应 ,在每反应 1 0 0 ~ 1 0 8拷贝范围内 ,Ct 值同DNA量的对数呈线性关系 .同一模板不同时间或同一时间不同管内扩增 ,所得Ct 值恒定 .用该方法检测 37例结核分枝杆菌培养阳性的痰液标本 ,敏感度为 1 0 0 % ;用该方法检测 1 6例TB系列阴性参考品 ,特异性为1 0 0 % .结果表明 ,所建立的方法是用于结核分枝杆菌定性定量检测较理想的方法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号