首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The interaction of intact Ehrlich ascites-tumour cells with Ca2+ at 37 degrees C consists of Ca2+ uptake followed by efflux from the cells. Under optimum conditions, two or three cycles of uptake and efflux are observed in the first 15 min after Ca2+ addition. 2. The respiratory substrates malate, succinate and ascorbate plus p-phenylenediamine support Ca2+ uptake. Ca2+ uptake at 37 degrees C is sensitive to the respiratory inhibitors rotenone and antimycin A when appropriate substrates are present. Ca2+ uptake and retention are inhibited by the uncoupler S-13. 3. Increasing extracellular Pi (12 to 30 mM) stimulates uncoupler-sensitive Ca2+ uptake, which reaches a maximum extent of 15 nmol/mg of protein when supported by succinate respiration. Ca2+ efflux is partially inhibited at 30 mM-Pi. 4. Optimum Ca2+ uptake occurs in the presence of succinate and Pi, suggesting that availability of substrate and Pi are rate-limiting. K. Ca2+ uptake occurs at 4 degrees C and is sensitive to uncouplers and oligomycin. Ca2+ efflux at this temperature is minimal. These data are consistent with a model in which passive diffusion of Ca2+ through the plasma membrane is followed by active uptake by the mitochondria. Ca2+ uptake is supported by substrates entering respiration at all three energy-coupling sites. Ca2+ efflux appears to be an active process with a high temperature coefficient.  相似文献   

2.
In this report, we consider the accumulation in roots, and transport to the shoot, of Na+ and K+ in intact lettuce plants (Lactuca sativa cv Black-seeded Simpson). Plants were grown in modified Hoagland medium supplemented with 10 moles NaCl per cubic meter. At this salinity, significant levels of Na+ were accumulated in roots and shoots, but there was no reduction in plant growth. Transport characteristics for both Na+ and K+ were qualitatively similar to those previously reported, for Spergularia marina, indicating that the results obtained with these experimental protocols are not limited to one unconventional experimental plant. The most pronounced difference in transport of the two ions was evident when transport was followed in a chase period after a 10 minute uptake pulse. For Na+, there was an initially rapid, but small, loss of label to the medium, and very little movement to the shoot. For K+, little label was lost from the plants, but translocation to the shoot proceeded for at least 60 minutes. The transport systems were further distinguished by treating the roots during labeling with 20 micrograms per milliliter cycloheximide. For K+, both uptake and translocation were reduced by about 50%. For Na+, root accumulation was stimulated more than five-fold, while transport to the shoot was reduced about 20%. Cycloheximide also modified the Na+ transport characteristics such that continued translocation occurred during the chase period of pulse-chase studies.  相似文献   

3.
4.
5.
6.
Mitochondria can unfold importing precursor proteins by unraveling them from their N-termini. However, how this unraveling is induced is not known. Two candidates for the unfolding activity are the electrical potential across the inner mitochondrial membrane and mitochondrial Hsp70 in the matrix. Here, we propose that many precursors are unfolded by the electrical potential acting directly on positively charged amino acid side chains in the targeting sequences. Only precursor proteins with targeting sequences that are long enough to reach the matrix at the initial interaction with the import machinery are unfolded by mitochondrial Hsp70, and this unfolding occurs even in the absence of a membrane potential.  相似文献   

7.
A method is described, based on the differential accumulation of Rb+ and methyltriphenylphosphonium, for the simultaneous estimation of the membrane potentials across the plasma membrane of isolated nerve endings (synaptosomes), and across the inner membrane of mitochondria within the synaptosomal cytoplasm. These determinations, together with measurements of respiratory rates, and ATP and phosphocreatine concentrations, are used to define the bioenergetic behaviour of isolated synaptosomes under a variety of conditions. Under control conditions, in the presence of glucose, the plasma and mitochondrial membrane potentials are respectively 45 and 148mV. Addition of a proton translocator induces a 5-fold increase in respiration, and abolishes the mitochondrial membrane potential. The addition of rotenone to inhibit respiration does not affect the plasma membrane potential, and only lowers the mitochondrial membrane potential to 128mV. Evidence is presented that ATP synthesis by anaerobic glycolysis is sufficient under these conditions to maintain ATP-dependent processes, including the reversal of the mitochondrial ATP synthetase. Addition of oligomycin under non-respiring conditions leads to a complete collapse of the mitochondrial potential. Even under control conditions the plasma membrane (Na+ + K+)-dependent ATPase is responsible for a significant proportion of the synaptosomal ATP turnover. Veratridine greatly increases respiration, and depolarizes the plasma membrane, but only slightly lowers the mitochondrial membrane potential. High K+ and ouabain also lower the plasma membrane potential without decreasing the mitochondrial membrane potential. In non-respiring synaptosomes, anaerobic glycolysis is incapable of maintaining cytosolic ATP during the increased turnover induced by veratridine, and the mitochondrial membrane potential collapses. It is concluded that the internal mitochondria must be considered in any study of synaptosomal transport.  相似文献   

8.
9.
10.
The role of mitochondrial membrane potential in ischemic heart failure   总被引:1,自引:0,他引:1  
The molecular events occurring during myocardial infarction and cardioprotection are described with an emphasis on the changes of the mitochondrial membrane potential (ΔΨm). The low ΔΨm values of the normal beating heart (100–140 mV) are explained by the allosteric ATP-inhibition of cytochrome c oxidase (CcO) through feedback inhibition by ATP at high [ATP]/[ADP] ratios. During ischemia the mechanism is reversibly switched off by signaling through reactive oxygen species (ROS). At reperfusion high ΔΨm values cause a burst of ROS production leading to apoptosis and/or necrosis. Ischemic preconditioning is suggested to cause additional phosphorylation of CcO, protecting the enzyme from immediate dephosphorylation via ROS signaling.  相似文献   

11.
Summary Plasma membrane vesicles were prepared from Ehrlich cells using two-phase system compartmentation. The highly pure plasma membrane vesicles obtained presented a negligible mitochondrial contamination and were suitable for studies of amino acid transport.l-Serine transport showed a clear ionic specificity, maximum incorporation being observed when an inwardly directed NaSCN gradient was used. Na+-dependentl-serine transport was dependent on assay temperature and membrane potential, and it seemed to be carried out by two different transport systems. An essential sulfhydryl group seemed to be involved in the transport process.  相似文献   

12.
Calcium-ion binding by the potential calcium-ion-binding protein, p9Ka   总被引:1,自引:0,他引:1  
p9Ka is a polypeptide of apparent molecular mass 9 kDa, present in cultured rat mammary myoepithelial-like cells, but virtually absent in their parental epithelial cells. mRNA for p9Ka is present in normal rodent tissues. The amino acid sequence of a protein of molecular mass 12 KDa, derived from the nucleotide sequence of the p9Ka gene, is related to that of S-100 protein, a calcium-ion-binding protein. p9Ka, isolated from cultured rat mammary myoepithelial-like cells is now shown to bind calcium ions in vitro suggesting that the derived amino acid sequence is correct, and that an apparent discrepancy between the molecular masses of the predicted and isolated p9Ka does not affect this activity.  相似文献   

13.
14.
It has been found that amytal competitively inhibits succinate (+ rotenone) oxidation by intact uncoupled mitochondria. Similar results were obtained in metabolic state 3, the Ki value being 0.45 mM. Amytal did not effect succinate oxidation by broken mitochondria and submitochondrial particles (at a concentration which inhibited succinate oxidation by intact mitochondria). Amytal inhibited the swelling of mitochondria suspended in ammonium succinate or ammonium malate but was without effect on the swelling of mitochondria in ammonium phosphate and potassium phosphate in the presence of valinomycin+carbonylcyanide p-trifluoromethoxyphenylhydrazone.Using [14C] succinate and [14C] citrate it has been shown that amytal inhibited the succinate/succinate, succinate/Pi, succinate/malate, and citrate/citrate and citrate/malate exchanges. Amytal inhibited Pi transport across mitochondrial membrane only if preincubated with mitochondria. Other barbiturates: phenobarbital, dial, veronal were found to inhibit [14C]succinate/anion (Pi, succinate, malonate, malate) exchange reactions in a manner similar to amytal. It is concluded that barbiturates non-specifically inhibit the dicarboxylate carrier system, tricarboxylate carrier and Pi translocator. It is postulated that the inhibition of succinate oxidation by barbiturates is caused mainly by the inhibition of succinate and Pi translocation across the mitochondrial membrane.  相似文献   

15.
BACKGROUND INFORMATION: Human OPA1 (optic atrophy type 1) is a dynamin-related protein of the mitochondrial IMS (intermembrane space) involved in membrane fusion and remodelling. Similarly to its yeast orthologue Mgm1p that exists in two isoforms generated by the serine protease Pcp1p/Rbd1p, OPA1 exists in various isoforms generated by alternative splicing and processing. In the present paper, we focus on protease processing of OPA1. RESULTS: We find that various mammalian cell types display a similar pattern of OPA1 isoforms [two L-OPA1 (long isoforms of OPA1) and three S-OPA1 (short isoforms of OPA1)] and that loss of the inner membrane potential, but not inhibition of oxidative phosphorylation or glycolysis, induces rapid and complete processing of L-OPA1 to S-OPA1. In isolated mitochondria, OPA1 processing was inhibited by heavy-metal chelators, pointing to processing by a mitochondrial metalloprotease. The pattern of OPA1 isoforms and its processing kinetics were normal in mitochondria devoid of the serine protease PARL (presenilins-associated rhomboid-like protein) - the human orthologue of Pcp1/Rbd1 - and in cells from patients carrying homozygous mutations in SPG7 (spastic paraplegia type 7), a gene encoding the matrix-oriented metalloprotease paraplegin. In contrast, OPA1 processing kinetics were delayed upon knock-down of YME1L (human yme1-like protein), an IMS-oriented metalloprotease. OPA1 processing was also stimulated during apoptosis, but inhibition of this processing did not affect apoptotic release of OPA1 and cytochrome c. Finally, we show that all OPA1 isoforms interact with Mfn1 (mitofusin 1) and Mfn2 and that these interactions are not affected by dissipation of DeltaPsim (inner mitochondrial membrane potential) or OPA1 processing. CONCLUSIONS: Metalloprotease-mediated processing of OPA1 is modulated by the inner membrane potential and is likely to be mediated by the YME1L protease.  相似文献   

16.
The verapamil-sensitive Ca2+ channel in the synaptosomal plasma membrane is investigated. Verapamil is without effect on Ca2+ uptake or steady-state content in synaptosomes with a polarized plasma membrane, but completely inhibits the additional Ca2+ uptake following plasma-membrane depolarization by high [K+], by veratridine plus ouabain or by high concentrations of the permeant cation tetraphenylphosphonium. Verapamil-insensitive Ca2+ influx and steady-state content are identical in polarized and depolarized synaptosomes, even though the Na+ electrochemical potential is greatly decreased in the latter, indicating that Na+/Ca2+ exchange is not a significant mechanism for Ca2+ efflux under these conditions. A transient Na+-dependent Ca2+ efflux can only be observed on addition of Na+ to Na+-depleted depolarized synaptosomes. While 0.2 mM verapamil decreases the ate of 86Rb+ efflux and 22Na+ entry during depolarization induced by veratridine plus ouabain, the final steady-state Na+ accumulation is not inhibited. Ca2+ efflux from synaptosomes following mitochondrial depolarization does not occur by a verapamil-sensitive pathway.  相似文献   

17.
18.
Transport of GSH was studied in isolated rat kidney cortical brush-border membrane vesicles in which gamma-glutamyltransferase had been inactivated by a specific affinity labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Transport of intact 2-3H-glycine-labeled GSH occurred into an osmotically active intravesicular space of AT-125-treated membranes. The initial rate of transport followed saturation kinetics with respect to GSH concentrations; an apparent Km of 0.21 mM and Vmax of 0.23 nmol/mg protein X 20 were calculated at 25 degrees C with a 0.1 M NaCl gradient (vesicle inside less than vesicle outside). Sodium chloride in the transport medium could be replaced with KCl without affecting transport activity. The rate of GSH uptake was enhanced by replacing KCl in the transport medium with K2SO4, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. The rate of GSH transport markedly decreased in the absence of a K+ gradient across the vesicular membranes and was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). These results indicate that GSH transport is dependent on membrane potential and involves the transfer of negative charge. The rate of GSH transport was inhibited by S-benzyl glutathione but not by glycine, glutamic acid, and gamma-glutamyl-p-nitroanilide. When incubated with [2-3H]glycine-labeled GSH, intact untreated vesicles also accumulated radioactivity; the rate of uptake was significantly higher in a Na+ gradient than in a K+ gradient. Sodium-dependent transport, but not sodium-independent uptake, was almost completely inhibited by a high concentration of unlabeled glycine. At equilibrium, most of the radioactivity which accumulated in the intravesicular space was accounted for by free glycine. These results suggest that GSH which is secreted into the tubular lumen by a specific translocase in the lumenal membranes or filtered by the glomerulus may be degraded in situ by membranous gamma-glutamyltransferase and peptidase activities which hydrolyze peptide bonds of cysteinylglycine and its derivatives. The resulting free amino acids can be reabsorbed into tubule cells by sodium-dependent transport systems in renal cortical brush-border membranes.  相似文献   

19.
20.
Thioredoxins (Trx) are a class of small multifunctional redox-active proteins found in all organisms. Recently, we reported the cloning of a mitochondrial thioredoxin, Trx2, from rat heart. To investigate the biological role of Trx2 we have isolated the human homologue, hTrx2, and generated HEK-293 cells overexpressing Trx2 (HEK-Trx2). Here, we show that HEK-Trx2 cells are more resistant toward etoposide. In addition, HEK-Trx2 are more sensitive toward rotenone, an inhibitor of complex I of the respiratory chain. Finally, overexpression of Trx2 confers an increase in mitochondrial membrane potential, DeltaPsi(m). Treatment with oligomycin could both reverse the effect of rotenone and decrease the membrane potential suggesting that Trx2 interferes with the activity of ATP synthase. Taken together, these results suggest that Trx2 interacts with specific components of the mitochondrial respiratory chain and plays an important role in the regulation of the mitochondrial membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号