首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Makarow 《The EMBO journal》1985,4(7):1855-1860
When vesicular stomatitis virus was incubated with Saccharomyces cerevisiae spheroplasts at 37 degrees C, part of the virus was internalized by the spheroplasts as shown by the following criteria. (i) The spheroplast-associated virus was protected from proteinase K digestion, which releases surface-bound virus by degrading the envelope glycoproteins. (ii) The spheroplast-associated virus was resistant to mild Triton X-100 treatment, which readily solubilizes the virus. The same results were obtained with Semliki Forest virus. Internalization of the two viruses followed linear kinetics up to 90 min at 37 degrees C. Internalization was concentration- and temperature-dependent. At 11 degrees C no uptake could be detected for at least 2 h. Homogenization and organelle fractionation protocols were designed for the S. cerevisiae spheroplasts to study the compartments into which the virions were internalized. Three compartments containing both marker viruses could be separated in density gradients. One coincided with vacuole markers, one banded at a slightly higher and one at a similar density to the plasma membrane markers. Thus, S. cerevisiae spheroplasts appear to have the capability of endocytosing particulate markers like viruses. The companion paper describes internalization of two soluble macromolecules, alpha-amylase and fluorescent dextran, into intact cells.  相似文献   

2.
Transfection of Rat1 fibroblasts with an activated form of rac1 (V12rac1) stimulated cell migration in vitro compared to transfection of Rat1 fibroblasts with vector only or with dominant negative rac1 (N17rac1). To investigate the involvement of proteases in this migration, we used a novel confocal assay to evaluate the ability of the Rat1 transfectants to degrade a quenched fluorescent protein substrate (DQ-green bovine serum albumin) embedded in a three-dimensional gelatin matrix. Cleavage of the substrate results in fluorescence, thus enabling one to image extracellular and intracellular proteolysis by living cells. The Rat1 transfectants accumulated degraded substrate intracellularly. V12rac1 increased accumulation of the fluorescent product in vesicles that also labeled with the lysosomal marker LysoTracker. Treatment of the V12rac1-transfected cells with membrane-permeable inhibitors of lysosomal cysteine proteases and a membrane-permeable selective inhibitor of the cysteine protease cathepsin B significantly reduced intracellular accumulation of degraded substrate, indicating that degradation occurred intracellularly. V12rac1 stimulated uptake of dextran 70 (a marker of macropinocytosis) and polystyrene beads (markers of phagocytosis) into vesicles that also labeled for cathepsin B. Thus, stimulation of the endocytic pathways of macropinocytosis and phagocytosis by activated Rac1 may be responsible for the increased internalization and subsequent degradation of extracellular proteins.  相似文献   

3.
Cells of a Saccharomyces cerevisiae mutant that is temperature-sensitive for secretion and cell surface growth become dense during incubation at the non-permissive temperature (37°C). This property allows the selection of additional secretory mutants by sedimentation of mutagenized cells on a Ludox density gradient. Colonies derived from dense cells are screened for conditional growth and secretion of invertase and acid phosphatase. The sec mutant strains that accumulate an abnormally large intracellular pool of invertase at 37°C (188 mutant clones) fall into 23 complementation groups, and the distribution of mutant alleles suggests that more complementation groups could be found. Bud emergence and incorporation of a plasma membrane sulfate permease activity stop quickly after a shift to 37°C. Many of the mutants are thermoreversible; upon return to the permissive temperature (25°C) the accumulated invertase is secreted. Electron microscopy of sec mutant cells reveals, with one exception, the temperature-dependent accumulation of membrane-enclosed secretory organelles. We suggest that these structures represent intermediates in a pathway in which secretion and plasma membrane assembly are colinear.  相似文献   

4.
Evidence is presented that endocytosis-deficient Saccharomyces cerevisiae end4 yeast cells rapidly internalize the fluorescent phospholipid analogues 1-palmitoyl-2-{6-[7-nitro-2,1, 3-benzoxadiazol-4-yl(NBD)amino] caproyl}phosphatidylcholine (P-C6-NBD-PtdCho) and P-C6-NBD-phosphatidylserine (P-C6-NBD-PtdSer). Both analogues redistributed between the exoplasmic and cytoplasmic leaflet with a half-time of < 15 min at 0 degrees C. The plateau of internalized analogues was about 70%. Transbilayer movement is probably protein-mediated, as the flip-flop of both analogues was very slow in liposomes composed of plasma-membrane lipids. Rapid analogue internalization was not abolished on depletion of intracellular ATP by about 90%. For P-C6-NBD-PtdCho only was a moderate decrease in the plateau of internalized analogues of about 20% observed, while that of P-C6-NBD-PtdSer was not affected. The Drs2 protein plays only a minor role, if any, in the rapid transbilayer movement of analogues in S. cerevisiae end4 cells. In S. cerevisiae end4 Deltadrs2 cells harbouring both an end4 allele and a drs2 null allele, about 60% and 50% of P-C6-NBD-PtdCho and P-C6-NBD-PtdSer, respectively, became internalized within 15 min at 0 degrees C. The preferential orientation of P-C6-NBD-PtdSer to the cytoplasmic leaflet is in qualitative agreement with the sequestering of endogenous phosphatidylserine to the cytoplasmic leaflet, as assessed by binding of annexin V. Virtually no binding of annexin V to spheroplasts of the parent wild-type strain or the mutant strains was observed. Likewise, no difference in the exposure of endogenous aminophospholipids to the exoplasmic leaflet between these strains was found by labelling with trinitrobenzenesulfonic acid. Thus, lipid asymmetry, at least of aminophospholipids, was preserved in S. cerevisiae end4 cells independently of the presence of the Drs2 protein.  相似文献   

5.
The 2,2'-dipyridyl-induced accumulation of protoporphyrin IX in Saccharomyces cerevisiae cells was shown to be accompanied by the photoinhibition of cell respiration and the enhancement of the photoinduced permeability of plasma membranes to the fluorescent dye primuline. The visible-light illumination (at 400-600 nm) of the mitochondria and plasma membranes isolated from yeast cells with a high level of endogenous protoporphyrin IX intensified lipid peroxidation in these subcellular organelles. Comparative studies showed that the rad 52 mutant cells, which are deficient in the postreplicative recombinational DNA repair system, are considerably more sensitive to the inactivating action of visible light than are the wild-type cells and the rad 3 mutant cells, which are deficient in the excision DNA repair system. The contribution of photodynamic damage to the yeast subcellular organelles to the lethal photodynamic effect is discussed.  相似文献   

6.
The cell cycle dependency of rice alpha-amylase production in Saccharomyces cerevisiae was investigated using synchronous and arrested cultures. The results of two separate synchronous cultures, using alpha-mating factor and a cdc28 mutant, indicated that the rice alpha-amylase-specific production rate is not constant during the cell cycle. The specific production rates during G1, S, and M phases were then ascertained by inhibiting the progression of the cell cycle using alpha-mating factor, hydroxyurea, and nocodazole, respectively. The specific production rate was found to be maximal during the M phase. The increase in the specific production rate during the M phase was confirmed from the accumulation of M-phase cells using a cdc15 mutant. The intracellular content of rice alpha-amylase was also measured during the cell cycle. Like the specific production rate, the intracellular content was found to fluctuate throughout the cell cycle, and to reach a maximum during M phase. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 262-271, 1997.  相似文献   

7.
The neonatal Fc receptor, FcRn mediates an endocytic salvage pathway that prevents degradation of IgG, thus contributing to the homeostasis of circulating IgG. Based on the low affinity of IgG for FcRn at neutral pH, internalization of IgG by endothelial cells is generally believed to occur via fluid-phase endocytosis. To investigate the role of FcRn in IgG internalization, we used quantitative confocal microscopy to characterize internalization of fluorescent Fc molecules by HULEC-5A lung microvascular endothelia transfected with GFP fusion proteins of human or mouse FcRn. In these studies, cells transfected with FcRn accumulated significantly more intracellular Fc than untransfected cells. Internalization of FcRn-binding forms of Fc was proportional to FcRn expression level, was enriched relative to dextran internalization in proportion to FcRn expression level, and was blocked by incubation with excess unlabeled Fc. Because we were unable to detect either surface expression of FcRn or surface binding of Fc, these results suggest that FcRn-dependent internalization of Fc may occur through sequestration of Fc by FcRn in early endosomes. These studies indicate that FcRn-dependent internalization of IgG may be important not only in cells taking up IgG from an extracellular acidic space, but also in endothelial cells participating in homeostatic regulation of circulating IgG levels.  相似文献   

8.
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.  相似文献   

9.
Diphtheria toxin kills spheroplasts of Saccharomyces cerevisiae but not the intact yeast cells. After 2 h of exposure to ca. 10(-7) M toxin, less than 1% of spheroplasts were able to regenerate into intact cells. The same high levels of toxin inhibited the rate of protein synthesis by more than 90% within 1 h, whereas RNA and DNA synthesis were not inhibited until 4 h or exposure. Both killing and protein synthesis inhibition were dependent on toxin concentration. The nature of the toxin-cell interaction was also studied by using fragments of intact toxin and mutant toxin proteins. Neither toxin fragment A nor CRM45 nor CRM197 affected spheroplasts, but CRM197 and ATP prevented the inhibitory action of intact toxin. These results suggest that toxin acts on S. cerevisiae spheroplasts in much the same manner as it acts on sensitive mammalian cells.  相似文献   

10.
Synaptic vesicle proteins are suggested to travel from the trans-Golgi network to active zones via tubulovesicular organelles, but the participation of different populations of endosomes in trafficking remains a matter of debate. Therefore, we generated a green fluorescent protein (GFP)-tagged version of the vesicular acetylcholine transporter (VAChT) and studied the localization of VAChT in organelles in the cell body and varicosities of living cholinergic cells. GFP-VAChT is distributed to both early and recycling endosomes in the cell body and is also observed to accumulate in endocytic organelles within varicosities of SN56 cells. GFP-VAChT positive organelles in varicosities are localized close to plasma membrane and are labeled with FM4-64 and GFP-Rab5, markers of endocytic vesicles and early endosomes, respectively. A GFP-VAChT mutant lacking a dileucine endocytosis motif (leucine residues 485 and 486 changed to alanine residues) accumulated at the plasma membrane in SN56 cells. This endocytosis-defective GFP-VAChT mutant is localized primarily at the somal plasma membrane and exhibits reduced neuritic targeting. Furthermore, the VAChT mutant did not accumulate in varicosities, as did VAChT. Our data suggest that clathrin-mediated internalization of VAChT to endosomes at the cell body might be involved in proper sorting and trafficking of VAChT to varicosities. We conclude that genesis of competent cholinergic secretory vesicles depends on multiple interactions of VAChT with endocytic proteins.  相似文献   

11.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

12.
Immunoelectron microscopy of Saccharomyces cerevisiae cells embedded in Lowicryl K4M has been used to localize invertase and plasma membrane (PM) ATPase in secretory organelles. sec mutant cells incubated at 37 degrees C were prepared for electron microscopy, and thin sections were incubated with polyclonal antibodies, followed by decoration with protein A-gold. Specific labeling of invertase was seen in the lumen of the endoplasmic reticulum, Golgi apparatus, and secretory vesicles in mutant cells that exaggerate these organelles. PM ATPase accumulated within the same organelles. Double-immune labeling revealed that invertase and PM ATPase colocalized in secretory vesicles. These results strengthen the view that secretion and plasma membrane assembly are biosynthetically coupled in yeast.  相似文献   

13.
Various intracellular organelles as well as outer cell membranes of bovine corpora lutea intrinsically contain gonadotropin receptors (Rao et al., J biol chem 256 (1981) 2628 [5]). In order to investigate whether exogenously added human choriogonadotropin (hCG) can internalize and bind to the intracellular sites, bovine luteal slices that had been carefully checked with respect to structural and functional integrity were incubated with 0.1 nM 125I-hCG. Following incubation, specific radioactivity was found to be associated with various intracellular organelles, but not with cytosol. The order of radioactivity uptake by subcellular organelles following a 2-h incubation was: Golgi medium greater than Golgi heavy greater than Golgi light greater than plasma membranes = rough endoplasmic reticulum greater than mitochondria-lysosomes- greater than nuclei. The 5'-nucleotidase activity and electron microscopic examination of the fractions revealed that the presence of radioactivity in the intracellular organelles cannot be attributed solely to plasma membrane contamination. The internalization and intracellular binding of 125I-hCG was time and temperature-dependent. Only excess unlabeled hCG and hLH (but not hCG subunits, FSH and PRL) competed with 125I-hCG for internalization in luteal slices. Very little or no 125I-hCG added was internalized in liver or kidney slices; luteal, liver and kidney slices accumulated neither 125I-BSA nor 125I. The radioactivity eluted from various luteal subcellular organelles was able to rebind to fresh corresponding organelles and came off Sepharose 6B columns in a position corresponding to native 125I-hCG. The gel filtration profile of detergent-solubilized radioactivity revealed that 125I-hCG was macromolecular bound. The degraded and altered 125I-hCG was found in the incubation media.  相似文献   

14.
In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. The yeast Saccharomyces cerevisiae induces trehalose or glycerol synthesis but does not increase intracellular proline levels during various stresses. Using a proline-accumulating mutant, we previously found that proline protects yeast cells from damage by freezing, oxidative, or ethanol stress. This mutant was recently shown to carry an allele of PRO1 which encodes the Asp154Asn mutant gamma-glutamyl kinase (GK), the first enzyme of the proline biosynthetic pathway. Here, enzymatic analysis of recombinant proteins revealed that the GK activity of S. cerevisiae is subject to feedback inhibition by proline. The Asp154Asn mutant was less sensitive to feedback inhibition than wild-type GK, leading to proline accumulation. To improve the enzymatic properties of GK, PCR random mutagenesis in PRO1 was employed. The mutagenized plasmid library was introduced into an S. cerevisiae non-proline-utilizing strain, and proline-overproducing mutants were selected on minimal medium containing the toxic proline analogue azetidine-2-carboxylic acid. We successfully isolated several mutant GKs that, due to extreme desensitization to inhibition, enhanced the ability to synthesize proline better than the Asp154Asn mutant. The amino acid changes were localized at the region between positions 142 and 154, probably on the molecular surface, suggesting that this region is involved in allosteric regulation. Furthermore, we found that yeast cells expressing Ile150Thr and Asn142Asp/Ile166Val mutant GKs were more tolerant to freezing stress than cells expressing the Asp154Asn mutant.  相似文献   

15.
Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse alpha-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in alpha-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of alpha-amylase. Our data also suggest that high levels of alpha-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous alpha-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis.  相似文献   

16.
alpha-factor, one of two peptide hormones responsible for synchronized mating between MATa and MAT alpha-cell types in Saccharomyces cerevisiae, binds to its cell surface receptor and is internalized in a time-, temperature-, and energy-dependent manner (Chvatchko, Y., I. Howald, and H. Riezman. 1986. Cell. 46:355-364). After internalization, alpha-factor is delivered to the vacuole via vesicular intermediates and degraded there consistent with an endocytic mechanism (Singer, B., and H. Riezman. 1990. J. Cell Biol. 110:1911-1922; Chvatchko, Y., I. Howald, and H. Riezman. 1986. Cell. 46:355-364). We have isolated two mutants that are defective in the internalization process. Both mutations confer a recessive, temperature-sensitive growth phenotype upon cells that cosegregates with their endocytosis defect. Lucifer yellow, a marker for fluid-phase endocytosis, shows accumulation characteristics in the mutants that are similar to the uptake characteristics of 35S-alpha-factor. The endocytic defect in end4 cells appears immediately upon shift to restrictive temperature and is reversible at permissive temperature if new protein synthesis is allowed. Furthermore, the end4 mutation only affects alpha-factor internalization and not the later delivery of alpha-factor to the vacuole. Other vesicle-mediated processes seem to be normal in end3 and end4 mutants. END3 and END4 are the first genes shown to be necessary for the internalization step of receptor-borne and fluid-phase markers in yeast.  相似文献   

17.
Mutations in the hook gene alter intracellular trafficking of internalized ligands in Drosophila. To dissect this defect in more detail, we developed a new approach to visualize the pathway taken by the Bride of Sevenless (Boss) ligand after its internalization into R7 cells. A chimeric protein consisting of HRP fused to Boss (HRP-Boss) was expressed in R8 cells. This chimera was fully functional: it rescued the boss mutant phenotype, and its trafficking was indistinguishable from that of the wild-type Boss protein. The HRP activity of the chimera was used to follow HRP-Boss trafficking on the ultrastructural level through early and late endosomes in R7 cells. In both wild-type and hook mutant eye disks, HRP-Boss was internalized into R7 cells. In wild-type tissue, Boss accumulated in mature multivesicular bodies (MVBs) within R7 cells; such accumulation was not observed in hook eye disks, however. Quantitative electron microscopy revealed a loss of mature MVBs in hook mutant tissue compared with wild type, whereas more than twice as many multilammelar late endosomes were detected. Our genetic analysis indicates that Hook is required late in endocytic trafficking to negatively regulate delivery from mature MVBs to multilammelar late endosomes and lysosomes.  相似文献   

18.
An oversecreting mutant of Saccharomyces cerevisiae was obtained from about 400 meiotic segregants derived from thediploid cells made by crossing the HBsAg-induced mutant NI-C with the wild-type strain Sey6211. When transformed with a plasmid containing mouse alpha-amylase cDNA, the mutant (NI-C-D4) exhibited an increased capacity (up to 13-fold) for the secretion of mouse alpha-amylase, higher than the parental strains and other standard wild-type strains. It was also shown that alpha-amylase secreted by the oversecreting mutant had a higher activity and contained more of the non-glycosylated form than the glycosylated form. This isolated oversecreting, low-glycosylation mutant may prove to be a potential S. cerevisiae host for the production of foreign proteins. Further genetic analysis suggested that the mutation responsible for the mutant's oversecretion was partially dominant and that both the oversecretion and low-glycosylation phenotypes were governed by a single chromosome mutation. These pleiotrophic phenotypes may be attributed to a defect in the synthesis of an ER-resident chaperone.  相似文献   

19.
The characteristics of the uptake by human epidermoid carcinoma (KB) cells of 5-methyltetrahydrofolate at extracellular concentrations in the physiologic range and the possible role of a membrane-associated folate binder in folate uptake by KB cells have been investigated. Uptake of 5-methyltetrahydrofolate was specific, saturable, and time-, temperature-, and concentration-dependent. Trypsin treatment released 50% of the 5-methyltetrahydrofolate accumulated by KB cells at 4 degrees C, but only 12% at 37 degrees C, indicating that most of the accumulated ligand was intracellular at 37 degrees C, thus demonstrating transport. Accumulated 5-methyltetrahydrofolate was bound to a membrane-associated protein which required detergent for its solubilization, and a significant amount of which was oriented to the cell exterior as demonstrated by its release by trypsin treatment of intact KB cells. The membrane-associated folate binder was immunoprecipitated by antiserum to purified human placental folate receptor, and this antiserum inhibited 5-methyltetrahydrofolate uptake by intact KB cells in a concentration-dependent manner. These data support the hypothesis that the membrane-associated folate-binding protein of human cells participates in the transport of folates under physiologic conditions.  相似文献   

20.
Morphology of the Yeast Endocytic Pathway   总被引:18,自引:11,他引:7       下载免费PDF全文
Positively charged Nanogold (Nanoprobes, Stony Brook, NY) has been developed as a new marker to follow the endocytic pathway in yeast. Positively charged Nanogold binds extensively to the surface of yeast spheroplasts and is internalized in an energy-dependent manner. Internalization of gold is blocked in the end3 mutant. During a time course of incubation of yeast spheroplasts with positively charged Nanogold at 15°C, the gold was detected sequentially in small vesicles, a peripheral, vesicular/tubular compartment that we designate as an early endosome, a multivesicular body corresponding to the late endosome near the vacuole, and in the vacuole. Experiments examining endocytosis in the sec18 mutant showed an accumulation of positively charged Nanogold in approximately 30–50 nm diameter vesicles. These vesicles most likely represent the primary endocytic vesicles as no other intermediates were detected in the mutant cells, and they correspond in size to the first vesicles detected in wild-type spheroplasts at 15°C. These data lend strong support to the idea that the internalization step of endocytosis in yeast involves formation of small vesicles of uniform size from the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号