首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcareous dark brown red soil (calcixerollic xerochrept) from northern Syria was used in a pot experiment to study the fate of triple super phosphate fertilizer (TSP) with and without a crop (local durum wheat [Triticum turgidum L. group durum (Desf.)] cv. Bohouth). The soil received 17 μg P/g soil of 32P-labeled TSP, and samples were collected from soils and plants at successive dates. Soil inorganic P was ≈?94% of total soil P, with only 50–80% being soluble. Calcium phosphate compounds were the dominant fraction (≤?68%) of the soluble inorganic soil P followed by occluded iron phosphate (≤?48%), and all other fractions were ≤?9%. Isotopic measurements showed that ≈?50% of fertilizer P was non–exchangeable within 2 days, and TSP values in each fraction of soil inorganic P fluctuated in relatively similar proportions to the concentrations of P fractions in soil. Available P (soil & TSP) in cropped soil was more than that in the uncropped soil, and plants had no effect on the distribution of P from fertilizer amongst the different soil P fractions.  相似文献   

2.
中亚热带不同母质发育森林土壤磷组分特征及其影响因素   总被引:1,自引:0,他引:1  
本研究以福建三明砂岩和花岗岩发育的米槠林土壤和杉木林土壤为对象,分析土壤磷组分、铁铝氧化物、微生物生物量以及磷酸酶活性等指标,研究母质和森林类型对土壤磷组分的影响程度和机制.结果表明:母质和森林类型显著影响土壤不同磷组分含量.总体上,砂岩发育土壤全磷含量、活性无机/有机磷、中等活性无机/有机磷以及惰性磷含量均显著高于花...  相似文献   

3.
Summary Surface soil materials from the 0- to 15 cm depth of 12 sites that were suspected to contain high levels of P, as a result of years of repeated applications of either inorganic or organic P fertilizers, were cropped with wheat and alfalfa in the greenhouse for about one year. The total P removed in plant materials provided an estimate of the plant available P in the soils. The probable dominant phosphate compound controlling the release of P in the soil solution during cropping was determined using the GEOCHEM program and an activity diagram. The data show that P availability is partly dependent on the stability of the phosphate compound present, although the relative positions of the points on the activity diagram show no quantitative relationship with either the total plant P uptake or the phosphate buffering capacity of the soils. The positions of the points, however, indicate that with time the formation of more stable P compounds during cropping could be attributed to reactions in the soil as well as to crop removal. The more soluble compounds could have recrystallized or were transformed into compounds of lower solubility. There is also the possibility that the more soluble P compounds were exhausted by crop removal leaving behind the less soluble compounds.  相似文献   

4.
Summary Soil and plant investigations were carried on a grove of Washington navel orange and Balady mandarin in the United Arab Republic to find out the cause of the large differences in the tree vigour. During 1965 and 1966 the groundwater level was measured several times, groundwater and soil samples were analysed, new shoots and leaves in three flushes/year were determined. Root intensity at distance and depth were also determined. Roots and leaves were analysed for several mineral contents. Results obtained refer to the depth of water table as the dominant factor responsible for growth differences, whereas salinity as secondary effect mostly was not involved. The number of shoots (for both varieties) was the most effected. Total leaf area (reflecting all other effects) was reduced tremendously by water table change from 171 to 53 cm for orange and from 158 to 89 cm for mandarin. Travelling distance of feeder roots, horizontally or vertically was reduced remarkably and its intensity shifted upward in front of a rising water table. Mineral contents did not change with water table. Yield of both varieties was remarkably reduced with rising water table. Contribution from the Pomology Division, College of Agr., Univ. Alex., Alexandria, U.A.R. Prof., of Pomology Univ., Alex. Director of Soil Salinity Lab., Ministry of Agr. U.A.R. Lecturer of Pomology Univ., Alex.  相似文献   

5.
Summary The effect of cropping on soil organic phosphorus was investigated in laboratory and greenhouse work with six soils. Successively lower contents of extractable organic phosphorus were found in samples that had been (a) airdried initially and stored in that condition, (b) incubated in a moist condition but without a crop, and (c) planted to four successive crops, the roots of the crops being removed before analysis of the soil. These differences were statistically significant. Samples of rhizosphere soil taken after the fourth crop did not yield significantly different amounts of extractable organic phosphorus than did bulk samples of cropped soil taken at the same time. Extractable organic and inorganic phosphorus in the soils were not significantly affected by drying the soil before each crop.Journal Paper No. J-5916 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 1183.Former Rockefeller Fellow and Professor, respectively. The senior author is now Associate Professor, Department of Soils, Punjab Agricultural University, Ludhiana, Punjab.  相似文献   

6.
胡宁  袁红  蓝家程  袁道先  傅瓦利  文志林 《生态学报》2014,34(24):7393-7402
为分析岩溶石漠化区不同植被恢复模式土壤无机磷的形态特征,评价植被恢复的土壤供磷潜力,阐明有机碳及钙素在无机磷形态转化中的作用,选取研究区内8种有代表性的样地,采用蒋柏藩无机磷分级方法对土壤无机磷形态特征及影响因素进行研究。结果表明:研究区土壤全磷与速效磷含量分别在0.25—1.35 g/kg、1.05—53.01 mg/kg范围,无机磷总量在123.94—934.61 mg/kg,耕地与退耕地以及各退耕地之间全磷、速效磷、各形态无机磷含量水平差异明显,各退耕地磷素含量水平介于耕地与次生马尾松林地之间,退耕地中桃林地、花椒林地磷素含量水平较高、樟树林地、柳杉林地、撂荒草地次之、撂荒灌丛地较低。各样地土壤无机磷占全磷比例在51.2%—72.4%,不同形态的无机磷含量表现为O-PFe-PCa-PAl-P,其中Ca2-P、Al-P对速效磷的贡献率大,Fe-P、Ca8-P贡献较小,O-P、Ca10-P献率最小。不同活性土壤有机碳与不同形态钙素对各形态无机磷在总无机磷中比例的影响较大,p H、容重、粘粒含量、含水量等其它理化性质影响较小。  相似文献   

7.
The fate and availability of P derived from granular fertilisers in an alkaline Calcarosol soil were examined in a 65-year field trial in a semi-arid environment (annual rainfall 325 mm). Sequential P fractionation was conducted in the soils collected from the trial plots receiving 0–12 kg P ha−1crop−1, and the rhizosphere soil after growing wheat (Triticum aestivum L. cv. Yitpi) and chickpea (Cicer arietinum L. cv. Genesis 836) for one or two 60-day cycles in the glasshouse. Increasing long-term P application rate over 65 years significantly increased all inorganic P (Pi) fractions except HCl–Pi. By contrast, P application did not affect or tended to decrease organic P (Po) fractions. Increasing P application also increased Olsen-P and resin-P but decreased the P buffer capacity and sorption maxima. Residual P, Pi and Po fractions accounted for an average of 32, 16 and 52% of total P, respectively. All soil P fractions including residual P in the rhizosphere soil declined following 60-day growth of either wheat or chickpea. The decreases were greater in soils with a history of high P application than low P. An exception was water-extractable Po, which increased following plant growth. Changes in various P fractions in the rhizosphere followed the same pattern for both plant species. Biomass production and P uptake of the plants grown in the glasshouse correlated positively with the residual P and inorganic fractions (except HCl–Pi) but negatively with Po in the H2O-, NaOH- and H2SO4-fractions of the original soils. The results suggest that the long-term application of fertiliser P to the calcareous sandy soil built up residual P and non-labile Pi fractions, but these P fractions are potentially available to crops.  相似文献   

8.
合理的养分和水分管理措施是提高退化草地生产力和生物多样性的有效途径,但养分和水添加对弃耕草地土壤无机磷组分的影响研究较少.本文依托内蒙古多伦县2005年建立的养分(N∶ 10 g·m-2·a-1、P∶ 10g·m-2·a-1)和水分(植物生长季增水180 mm)添加田间试验,研究了表土(0~10 cm)无机磷组分及有效...  相似文献   

9.
磷(P)是森林生态系统生产力的重要限制性元素。土壤磷的有效性取决于磷的存在形态及其转化过程。目前有关增温如何调控磷形态转化过程, 从而促进土壤有效磷含量增加的机制尚未明确。该研究以南亚热带森林为研究对象, 采用沿海拔高度从300 m下降至30 m以模拟温度自然上升的方法, 采集该林型0-10、10-20、20-40 cm的土壤, 并用适用于酸性土壤的连续浸提方法分离不同形态磷, 研究增温对土壤不同形态磷含量的影响, 探讨土壤不同形态磷与有效磷的关系, 识别对土壤有效磷在增温背景下增加有重要贡献的磷组分。结果表明增温使0-10 cm的无机钙磷(Ca-Pi)及20-40 cm的无机铁磷(Fe-Pi)和总无机磷含量分别显著增加了65.5%、17.9%和18.5%, 但对总有机磷及各有机磷组分含量均无显著影响。土壤不同形态磷与有效磷含量的相关分析表明, 有效磷与无机态的不同形态磷及有机铝磷、有机铁磷含量均显著正相关, 其中与Fe-Pi含量的相关性最强。通过土壤不同形态磷与有效磷含量的通径分析进一步发现, 无机铝磷、Fe-Pi是土壤磷转化过程中的重要中间过渡性磷组分, 且Fe-Pi是促进有效磷含量增加最重要的直接贡献磷组分。结合前期研究结果, 增温可能增大了凋落物磷对土壤磷的输入, 还可能强化了土壤的吸附和沉淀过程, 使得更多进入到土壤的溶解态磷转化为Ca-Pi、Fe-Pi等缓效磷源, 其中Fe-Pi可能成为南亚热带森林在气候变暖背景下最重要的有效磷来源。  相似文献   

10.
Summary The effects of two water regimes: Continuous flooding and flooding with soil drying on iron toxicity to rice in an acid sulfate soil was studied by continuously growing 7 crops of IR-32 rice in pots under the two water treatments. There was no plant growth upto the second crop under both water treatments due to iron toxicity. But there was good growth of rice under the continuous water regime from third cropping onwards, however, there was no growth of rice in the flooding with soil drying treatment even upto the seventh crop due to iron toxicity.The results of the study bring out that keeping an acid sulfate soil flooded for a few weeks and then planting rice when iron in soil solution has dropped below toxicity level may be a possible management practice for lowland rice culture on such soils. Drying and reflooding an acid sulfate soil on the other hand aggravates soil acidity and keeps iron in solution in high amounts to be toxic to rice plant.  相似文献   

11.
Despite the high phosphorus (P) mobilizing capacity of many legumes, recent studies have found that, at least in calcareous soils, wheat is also able to access insoluble P fractions through yet unknown mechanism(s). We hypothesized that insoluble P fractions may be more available to non-legume plants in alkaline soils due to increased dissolution of the dominant calcium(Ca)-P pool into depleted labile P pools, whereas non-legumes may have limited access to insoluble P fractions in iron(Fe)- and aluminium(Al)-P dominated acid soils. Four crop species (faba bean, chickpea, wheat and canola) were grown on two acid and one alkaline soil under glasshouse conditions to examine rhizosphere processes and soil P fractions accessed. While all species generally depleted the H2O-soluble inorganic P (water Pi) pool in all soils, there was no net depletion of the labile NaHCO3-extractable inorganic P fraction (NaHCO3 Pi) by any species in any soil. The NaOH-extractable P fraction (NaOH Pi) in the alkaline soil was the only non-labile Pi fraction depleted by all crops (particularly canola), possibly due to increases in rhizosphere pH. Chickpea mobilized the insoluble HCl Pi and residual P fractions; however, rhizosphere pH and carboxylate exudation could not fully explain all of the observed Pi depletion in each soil. All organic P fractions appeared highly recalcitrant, with the exception of some depletion of the NaHCO3 Po fraction by faba bean in the acid soils. Chickpea and faba bean did not show a higher capacity than wheat or canola to mobilize insoluble P pools across all soil types, and the availability of various P fractions to legume and non-legume crops differed in soils with contrasting P dynamics.  相似文献   

12.
Sulfur cycling in grassland and parkland soils   总被引:3,自引:3,他引:0  
A conceptual diagram of the S cycle in grassland soils is presented as a framework for discussing S cycling process studies. Changes in the mineralization of S and in the redistribution of35S-labeled sulfate among soil organic matter fractions were investigated during incubation of cropped and uncropped soils.Little mineralization or net immobilization of sulfur occurred in closed system incubations where the soils were left undisturbed throughout the incubations. Significantly more S was mineralized in open system incubations where the soils were leached periodically. Net mineralization was significantly greater in cropped soils compared with uncropped soils. The distribution of35S was significantly affected by the addition of various substrates (sulfate, cellulose or a combination of both) and by the presence of plants. Under conditions of high solution sulfate, the majority of35S incorporated was observed in the HI-reducible S fraction. When the solution sulfate concentrations were lower, there was a reduction in the proportion of35S incorporated into the HI-reducible S fraction. The results of these experiment will be discussed in relation to the hypotheses presented by McGill and Cole (1981) and the conceptual diagram of the S cycle in grassland soils.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.Publication No. R 353 of the Saskatchewan Institute of Pedology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWO  相似文献   

13.
Summary The transformation of phosphorus in a rice-wheat cropping sequence was studied on alluvial, black, red and laterite soils of India. Phosphorus applied to rice increased Al-P and Fe-P in all soils, R-P in alluvial, black and laterite, and Fe-P and Ca-P in laterite soil only, while it increased native Fe-P in black and red soils. Phosphorus applied to rice and recovered as Al-P was higher after wheat than after rice in alluvial, red and laterite soils. In alluvial and laterite soils, the sum of total inorganic phosphorus fractions in no-P treatment was almost the same after the harvest of rice or wheat, while in black and red soils it was lower after wheat than after rice.  相似文献   

14.
Summary In a pot experiment with 26 calcareous soils, the critical limit of Fe in soils and plants was evaluated. DTPA-extractable Fe was found significanty correlated with Bray's per cent yield in rice. The Fe2+ (iron) in rice and lentil was also found significantly correlated with DTPA-extractable Fe as well as Bray's per cent yield showing thereby the superiority of Fe2+ (iron) in leaves over DTPA-extractable soil Fe to differentiate Fe responsive soils from non-responsive ones. The total Fe content in plant tissues does not seem correlated with the occurrence of Fe deficiency. The threshold values of DTPA-extractable soil Fe and Fe2+ (iron) in rice and lentil leaves were 6.95, 44 and 74.5 ppm, respectively below which appreciable responses to Fe application were observed. The optimum Fe level for these soils was found to be 10 ppm in which the dry matter yield response in all the 19 rice soils and 16 lentil soils ranged from 14.28 to 56.16 (Av. 25.75%) and 13.31 to 53.97 (Av. 22.47%), respectively.  相似文献   

15.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

16.
Bottner  Pierre  Pansu  Marc  Sallih  Zaher 《Plant and Soil》1999,216(1-2):15-25
The aim of this experiment was to study the effect of living roots on soil carbon metabolism at different decomposition stages during a long-term incubation. Plant material labelled with 14C and 15N was incubated in two contrasting soils under controlled laboratory conditions, over two years. Half the samples were cropped with wheat (Triticum aestivum) 11 times in succession. At earing time the wheat was harvested, the roots were extracted from the soil and a new crop was started. Thus the soils were continuously occupied by active root systems. The other half of the samples was maintained bare, without plants under the same conditions. Over the 2 years, pairs of cropped and bare soils were analysed at eight sampling occasions (total-, plant debris-, and microbial biomass-C and -14C). A five compartment (labile and recalcitrant plant residues, labile microbial metabolites, microbial biomass and stabilised humified compounds) decomposition model was fitted to the labelled and soil native organic matter data of the bare and cropped soils. Two different phases in the decomposition processes showed a different plant effect. (1) During the initial fast decomposition stage, labile 14C-material stimulated microbial activities and N immobilisation, increasing the 14C-microbial biomass. In the presence of living roots, competition between micro-organisms and plants for inorganic N weakly lowered the measured and predicted total-14C mineralisation and resulted in a lower plant productivity compared to subsequent growths. (2) In contrast, beyond 3–6 months, when the labile material was exhausted, during the slow decomposition stage, the presence of living roots stimulated the mineralisation of the recalcitrant plant residue-14C in the sandy soil and of the humified-14C in the clay soil. In the sandy soil, the presence of roots also substantially stimulated decomposition of old soil native humus compounds. During this slow decomposition stage, the measured and predicted plant induced decrease in total-14C and -C was essentially explained by the predicted decrease in humus-14C and -C. The 14C-microbial biomass (MB) partly decayed or became inactive in the bare soils, whereas in the rooted soils, the labelled MB turnover was accelerated: the MB-14C was replaced by unlabelled-C from C derived from living roots. At the end of experiment, the MB-C in the cropped soils was 2.5–3 times higher than in the bare soils. To sustain this biomass and activity, the model predicted a daily root derived C input (rhizodeposition), amounting to 5.4 and 3.2% of the plant biomass-C or estimated at 46 and 41% of the daily net assimilated C (shoot + root + rhizodeposition C) in the clay and sandy soil, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Summary A comparison of different zinc carriers showed that application of Zn-DTPA, Zn-EDTA, Zn-fulvate and ZnSO4 significantly increased the dry matter yield and zinc uptake by corn over the control treatment where no zinc was applied. The chelates in particular enhanced to a greater extent the uptake of both native and applied sources than that observed with ZnSO4 as the zinc carrier. Both the dry matter yield and zinc uptake by corn showed a positive and significant relationship with self-diffusion coefficient of zinc showing thereby that diffusion contributed mainly the supply of Zn from the ambient soil matrix to plant roots. The effectiveness of the chelates varied depending on their capacity to retain Zn in a soluble form in the soil solution.It is evident that zinc nutrition of plants in alkaline and calcareous soils can be more effectively regulated by both synthetic and natural chelates or organic manures which contain substantial amount of complexed zinc.Journal Paper No. 1 from the Department of Soil Science and Agric. Chemistry, Tirhut College of Agriculture, Dholi, Muzaffarpur, Bihar, India.  相似文献   

18.
It is generally assumed that phosphorus (P) availability for plant growth on highly weathered and P-deficient tropical soils may depend more on biologically mediated organic P (Po) turnover processes than on the release of adsorbed inorganic P (Pi). However, experimental evidence showing the linkages between Po, microbial activity, P cycling and soil P availability is scarce. To test whether land-use systems with higher soil Po are characterized by greater soil biological activity and increased P mineralization, we analyzed the partitioning of P among various organic and inorganic P fractions in soils of contrasting agricultural land-use systems and related it to biological soil properties. Isotopic labeling was used to obtain information on the turnover of P held in the microbial biomass. Soil samples were taken from grass–legume pasture (GL), continuous rice (CR) and native savanna (SAV) which served as reference. In agreement with estimated P budgets (+277, +70 and 0 kg P ha–1 for CR, GL and SAV, respectively), available P estimated using Bray-2 and resin extraction declined in the order CR > GL > SAV. Increases in Bray-2 and resin Pi were greater in CR than GL relative to total soil P increase. Organic P fractions were significantly less affected by P inputs than inorganic fractions, but were a more important sink in GL than CR soils. Extractable microbial P (Pchl) was slightly higher in GL (6.6 mg P kg–1) than SAV soils (5.4 mg P kg–1), and significantly lowest in CR (2.6 mg P kg–1). Two days after labeling the soil with carrier free 33P, 25, 10 and 2% of the added 33P were found in Pchl in GL, SAV and CR soils, respectively, suggesting a high and rapid microbial P turnover that was highest in GL soils. Indicators of P mineralization were higher in GL than CR soils, suggesting a greater transformation potential to render Po available. Legume-based pastures (GL) can be considered as an important land-use option as they stimulate P cycling. However, it remains to be investigated whether crops planted in pasture–crop rotations could benefit from the enhanced Po cycling in grass–legume soils. Furthermore, there is need to develop and test a direct method to quantify Po mineralization in these systems.  相似文献   

19.
We conducted a 4-year field experiment on a calcareous paddy soil in Zhejiang province of China to measure the changes in chemically extracted soil P fractions in an irrigated double-cropping rice system. Treatments included four fertilizer combinations (unfertilized control, NK, NP, and NPK) as main-plots and two rice cultivar types (inbred vs. hybrid rice) as sub-plots. Total plant P uptake and grain yield of rice declined in all treatments over time. Severe P-deficiency and significant rice yield losses began in treatments without P application after the second rice crop. Compared to inbred rice, hybrid rice increased grain yield (+18%), N uptake (+11%) and K uptake (+27%) but there was no significant difference in total plant P uptake. Recovery efficiencies of fertilizer-P averaged 31–32% in both cultivars. In treatments without P application, the P mass balance was negative (−6 to −8 kg P ha−1 crop−1) and phosphorus was drawn down in all inorganic P fractions, including resin, alkali- (NaHCO3-Pi and NaOH-Pi) and acid-soluble P fractions (dilute HCl-P, concentrated HCl-P, residual-P). Only small amounts were removed from organic P fractions, 1–3 mg P kg−1 year−1 from NaHCO3-Po and none from NaOH-Po. In treatments with fertilizer-P addition, the P mass balance was positive (+8 to 10 kg P ha−1 crop−1), soil P declined at a slower rate in inorganic P fractions and it increased (+51%) in the residual-P fraction. Hybrid rice generally caused greater depletion of inorganic soil P fractions than inbred rice, but there was no difference among cultivars in their effect on NaHCO3-Po and NaOH-Po. Positive correlations (r = 0.63–0.81, P < 0.001) were observed between all inorganic P fractions (except residual-P) and total P uptake by rice. Our results suggest that rice plants draw P from a continuum of chemically extracted fractions that are assumed to have widely differing plant P availability. Regular P additions are required to maintain the effective soil P supply and differences between inbred and hybrid rice should be taken into account in P management strategies.  相似文献   

20.
Soil fertility and leaching losses of nutrients were compared between a Fimic Anthrosol and a Xanthic Ferralsol from Central Amazônia. The Anthrosol was a relict soil from pre-Columbian settlements with high organic C containing large proportions of black carbon. It was further tested whether charcoal additions among other organic and inorganic applications could produce similarly fertile soils as these archaeological Anthrosols. In the first experiment, cowpea (Vigna unguiculata (L.) Walp.) was planted in pots, while in the second experiment lysimeters were used to quantify water and nutrient leaching from soil cropped to rice (Oryza sativa L.). The Anthrosol showed significantly higher P, Ca, Mn, and Zn availability than the Ferralsol increasing biomass production of both cowpea and rice by 38–45% without fertilization (P<0.05). The soil N contents were also higher in the Anthrosol but the wide C-to-N ratios due to high soil C contents led to immobilization of N. Despite the generally high nutrient availability, nutrient leaching was minimal in the Anthrosol, providing an explanation for their sustainable fertility. However, when inorganic nutrients were applied to the Anthrosol, nutrient leaching exceeded the one found in the fertilized Ferralsol. Charcoal additions significantly increased plant growth and nutrition. While N availability in the Ferralsol decreased similar to the Anthrosol, uptake of P, K, Ca, Zn, and Cu by the plants increased with higher charcoal additions. Leaching of applied fertilizer N was significantly reduced by charcoal, and Ca and Mg leaching was delayed. In both the Ferralsol with added charcoal and the Anthrosol, nutrient availability was elevated with the exception of N while nutrient leaching was comparatively low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号