首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling component Enhanced Disease Susceptibility1 function redundantly in this low-18:1-derived pathway to induce SA signaling but do not function in the repression of JA responses. We show that repression of JA-mediated signaling under low-18:1 conditions is mediated via the WRKY50 and WRKY51 proteins. Knockout mutations in WRKY50 and WRKY51 lowered SA levels but did not restore pathogenesis-related gene expression or pathogen resistance to basal levels in the low-18:1-containing Arabidopsis (Arabidopsis thaliana) mutant, suppressor of SA insensitivity2 (ssi2). In contrast, both JA-inducible PDF1.2 (defensin) expression and basal resistance to Botrytis cinerea were restored. Simultaneous mutations in both WRKY genes (ssi2 wrky50 wrky51) did not further enhance the JA or Botrytis-related responses. The ssi2 wrky50 and ssi2 wrky51 plants contained high levels of reactive oxygen species and exhibited enhanced cell death, the same as ssi2 plants. This suggested that high reactive oxygen species levels or increased cell death were not responsible for the enhanced susceptibility of ssi2 plants to B. cinerea. Exogenous SA inhibited JA-inducible PDF1.2 expression in the wild type but not in wrky50 or wrky51 mutant plants. These results show that the WRKY50 and WRKY51 proteins mediate both SA- and low-18:1-dependent repression of JA signaling.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
植物中逆境反应相关的WRKY转录因子研究进展   总被引:3,自引:0,他引:3  
李冉  娄永根 《生态学报》2011,31(11):3223-3231
WRKY转录因子是植物体内一类比较大的转录因子家族,它在植物的生长发育以及抗逆境反应中起着非常重要的作用。本文综述了WRKY转录因子在植物应对冻害、干旱、盐害等非生物胁迫与病原菌、虫害等生物胁迫反应中的重要调控功能,并概括了WRKY转录因子在调控这些逆境反应中的机制。  相似文献   

13.
The Arabidopsis NPR1 gene is a positive regulator of inducible plant disease resistance. Expression of NPR1 is induced by pathogen infection or treatment with defense-inducing compounds such as salicylic acid (SA). Transgenic plants overexpressing NPR1 exhibit enhanced resistance to a broad spectrum of microbial pathogens, whereas plants underexpressing the gene are more susceptible to pathogen infection. These results suggest that regulation of NPR1 gene expression is important for the activation of plant defense responses. In the present study, we report the identification of W-box sequences in the promoter region of the NPR1 gene that are recognized specifically by SA-induced WRKY DNA binding proteins from Arabidopsis. Mutations in these W-box sequences abolished their recognition by WRKY DNA binding proteins, rendered the promoter unable to activate a downstream reporter gene, and compromised the ability of NPR1 to complement npr1 mutants for SA-induced defense gene expression and disease resistance. These results provide strong evidence that certain WRKY genes act upstream of NPR1 and positively regulate its expression during the activation of plant defense responses. Consistent with this model, we found that SA-induced expression of a number of WRKY genes was independent of NPR1.  相似文献   

14.
15.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号