首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Cell-free preparations from T. neapolitanus catalyzed an ATP-dependent reduction of pyridine nucleotides by thiosulfate. The reduction of flavins by thiosulfate was also observed to be an energy-linked process. Optimal reaction occurred at pH 7.3–7.5 in the presence of 7 mM S2O3 =, 1.5 mM ATP and 0.7 mM NAD+ or NADP+. The enzyme(s) catalyzing the energy-linked reactions appear to reside in the 144000 x g supernatant fraction since washed particles failed to catalyze the ATP driven NAD+ reduction by S2O3 +; the cell-free preparations contained, however, S2O3 = oxidase and ferro-cytochrome c: O2 oxidoreductase activities. The ATP-driven reduction of flavins or that of the pyridine nucleotides was inhibited bythe inhibitors that intersect the electron transport chain in the flavin or that of the cytochrome b and c regions. In the flavin-inhibited system, quinones could substitute as electron bypass carriers for the reduction of pyridine nucleotides. Uncouplers of oxidative phosphorylation and oligomycin inhibited the energy-transfer reactions. A utilization of 2 to 3 ATP equivalents was observed for the reduction of each equivalent of NAD+. Such observations indicate that the T. neapolitanus system operated with an efficiency of approximately 80% with respect to the utilization of energy for the generation of reducing power.Non-standard abbreviations HQNO 2-n-hyptyl-4-hydroxyquinoline N-oxide - TTFA Thenoyl triflouroacetone - CCCP m-chlorocarbonylcyanide-phenylhydrazone - DNP 2,4-dinitrophenol  相似文献   

3.
Dark and light oxidation of NADPH was measured in Spirulina maxima thylakoid membranes. The dark reaction was more cyanide sensitive than the light reaction. In light, 83% of the electrons from NADPH produced H2O2 on reducing oxygen, whereas in the dark this number was only 36%. These results are explained by assuming the presence of an electron transport segment common to the photosynthetic and the respiratory chains, so that electrons flowing through the cyanide sensitive oxidase in the dark are diverted to the photosytem (PS) I reaction center (P700). In addition, cytochrome (cyt) c 553 was found to be an electron donor for both cyt oxidase and P700. Half maximum reduction rates were obtained with 7 M cyt c 553. The intrathylakoidal concentration of cyt c 553 was determined to be 83 M. About 60% of the respiratory NADPH oxidation activity was lost by extracting the membranes with pentane and was restored by adding plastoquinone (the main photosythetic quinone). NADPH oxidation activity was also inhibited upon washing the membranes with a low salt buffer. This activity was restored by adding partially purified ferredoxin-NADP+ oxido-reductase (FNR). A model for the electron transport in thylakoids, in which cyt c 553, plastoquinone and FNR participate in both photosynthesis and respiration is proposed.  相似文献   

4.
Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzes the novel reduction of p-nitro-so-N,N-dimethylaniline with NADH as a cofactor. Apparent kinetic constants for this enzymatic reaction are: V 2=2.1 s–1, K Q=456 M, K iQ=119 M, and K P=1.47 mM, at pH 8.9, 25 °C. This reaction is especially useful for the quantitative determination of NAD+ and NADH by enzymatic cycling.  相似文献   

5.
In the present study the light induced formation of superoxide and intrinsic superoxide dismutase (SOD) activity in PS II membrane fragments and D1/D2/Cytb559-complexes from spinach have been analyzed by the use of ferricytochrome c (cyt c(III)) reduction and xanthine/xanthine oxidase as assay systems. The following results were obtained: 1.) Photoreduction of Cyt c (III) by PS II membrane fragments is induced by addition of sodium azide, tetracyane ethylene (TCNE) or carbonylcyanide-p-trifluoromethoxy-phenylhydrazone (FCCP) and after removal of the extrinsic polypeptides by a 1M CaCl2-treatment. This activity which is absent in control samples becomes completely inhibited by the addition of exogenous SOD. 2.) The TCNE induced cyt c(III) photoreduction by PS II membrane fragments was found to be characterized by a half maximal concentration of c1/2=10 M TCNE. Simultaneously, TCNE inhibits the oxygen evolution rate of PS II membrane fragments with c1/2 3 M. 3.) The photoproduction of O2 is coupled with H+-uptake. This effect is diminished by the addition of the O2 -trap cyt c(III). 4.) D1/D2/Cytb559-complexes and PS II membrane fragments deprived of the extrinsic proteins and manganese exhibit no SOD-activity but are capable of producing O2 in the light if a PS II electron donor is added.Based on these results the site(s) of light induced superoxide formation in PS II is (are) inferred to be located at the acceptor side. A part of the PS II donor side and Cyt b559 in its HP-form are proposed to provide an intrinsic superoxide dismutase (SOD) activity.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - ANT-2p 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene - BCP bromocresol purple - cyt cytochrome - Cyt c cytochrome c - DCIP 2,6-dichlorophenol-indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DEDTC Diethyldithiocarbamate - DMBQ 2,5-dimethyl-p-benzoquinone - DPC 1,5-diphenylcarbazide - FCCP carbonylcyanide-p-trifluoro/methoxy-phenylhydrazone - HP high potential - LP low potential - MES 2-(N-morpholino)ethanesulfonic acid - NADP nicotinamide adenine dinucleotide phosphate - SOD superoxide dismutase - TCNE tetracyane ethylene - TEMED N,N,N,N-tetramethylethylenediamine  相似文献   

6.
Escherichia coli grown anaerobically for osmotic studies upon increased osmolarity in alkaline medium carried out H+–K+-exchange in two steps, the first of which was DCCD1 sensitive and osmo-dependent and had the 2H+/K+ stoichiometry. H+-efflux in the presence of protonophore (CCCP) upon increase of osmolarity was shown to be high and inhibited by DCCD, whereas H+-efflux induced by a decrease of osmolarity was small and not inhibited by DCCD. The 2H+/K+-exchange was absent intrkA anduncA mutants. InuncB mutant 2H+/K+-exchange was not DCCD-and osmosensitive. Competition between DCCD and osmoshock on inhibition of 2H+/K+-exchange was found. Osmosensitivity of this exchange disappeared in spheroplasts. Osmosensitivity of both 2H+/K+-exchange and the F0F1 and osmoregulation of the F0F1 via F0 and a periplasmic space are postulated.Abbreviations F0F1 H+-ATPase complex - F0 H+-channel, proteolipid - F1 H+-ATPase - Trk constitutive system for K+ uptake - PV periplasmic protein valve - DCCD N,N-dicyclohexylcarbodiimide - CCCP carbonylcyanide-m-chlorophenylhydrazone - H or K transmembrane electrochemical gradient for H+ or K+ respectively - membrane potential - upshock or downshock increase or decrease of medium osmolarity, respectively - CGSC E. coli Genetic Stock Center, Yale University, USA  相似文献   

7.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

8.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

9.
Ribulose bisphosphate carboxylase (EC 4.1.1.39) from Thiobacillus A2 has been purified to homogeneity on the basis of polyacrylamide gel electrophoresis and U.V. analysis during sedimentation velocity studies. The enzyme had an optimum pH of about 8.2 with Tris-HCl buffers. The molecular weight was about 521000 with an S rel. of 16.9. K m for RuBP was 122 M, for total CO2 it was 4.17 mM, and for Mg2+ 20.0 M. The absolute requirement for a divalent cation was satisfied by Mg2+ which was replaceable to a certain extent by Mn2+. Activity was not significantly affected by SO 4 2- , SO 3 2- , or S2O 3 2- at 1.0 mM. At this concentration S2- caused a 27% stimulation. All mercurials tested were inhibitory. pHMB was the most potent causing about 60% inhibition at 0.01 mM. This inhibition was reversible by low concentrations of cysteine. Cyanide was also inhibitory. Its mode of inhibition with respect to RuBP was un-competitive and with a K i of 20 M. Lost activity could be restored partially by GSH or Cu2+. Although azide at the concentration tested had no significant effect on enzyme activity, 2,4-dinitrophenol at 1.0 mM caused 91% inhibition. Finally, activity was also affected by energy charge.Abbreviations ATP adenosine-5-triphosphate - GAPDH glyceraldehyde phosphate dehydrogenase - GSH (reduced) glutathione - G6P glucose-6-phosphate - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - pHMB parahydroxymercuribenzoate - 6PG 6-phosphogluconate - 3-PGA 3-phosphoglycerate - PGK phosphoglyceratekinase - RuBP ribulose-1,5-bisphosphate  相似文献   

10.
Zusammenfassung Der Gehalt an reduzierten Nicotinamid-adenin-dinucleotiden bei Rhodospirillum rubrum, Rhodopseudomonas spheroides und Rps. capsulata wird beim Absenken des pO2 erst zwischen 0,2 und 0,5 mm Hg deutlich erhöht.Beim schnellen Wechsel (dichte Bakteriensuspension) zur Anaerobiose tritt bei R. rubrum eine deutliche Überreduktion der Nicotinamid-adenin-dinucleotide ein und bei erneuter Belüftung eine Überoxydation.Der Reduktionszustand der Cytochrome b+c2 und c2 (Differenzspektren 422 m bzw. 426 m oder 428 m minus 405 m und 550 m minus 545 m bzw. 550 m minus 560 m) erhöht sich etwa zur gleichen Zeit wie die Konzentration von NAD(P)H. Bei erneuter Belüftung tritt immer eine Überoxydation ein, die über 1 min andauern kann.Die änderung des Redoxgleichgewichts von NAD(P)+/NAD(P)H und der Cytochrome ist korreliert mit dem Zusammenbruch des Energiestoffwechels (oxydative Phosphorylierung), zeigt aber keine Beziehung zum Beginn der Bakteriochlorophyll-synthese unter semiaeroben Wachstumsbedingungen, die schon bei höherem pO2 erfolgt.Damit konnte gezeigt werden, daß die Induktion der BChl.-Synthese in Dunkelkulturen durch Änderung des O2-Partialdruckes in keinem direkten Zusammenhang zur Änderung des Redoxgleichgewichtes von NAD(P)+/NAD(P)H und der Cytochrome b und c2 steht.
The influence of the pO2 on the redox balance of NAD(P) and of cytochrome b and c2 in some Athiorhodaceae
Summary If the oxygen partial pressure in growing cultures of Rhodospirillum rubrum, Rhodopseudomonas spheroides, and Rhodopseudomonas capsulata is slowly lowered the level of reduced nicotinamide-adenine dinucleotide is strongly increased but not before the pO2 is dropped beneath 0.2–0.5 mm Hg.A very quick change from aerobic to strict anaerobic conditions in a dense suspension of R. rubrum causes a significant overreduction of the nicotinamide-adenine dinucleotides. After switching on the aeration an overoxidation is observable.The reduction of cytochromes b and c2 obeys the same kinetics as the reduction of NAD(P)+. A sudden aeration is followed by an overoxidation, which continues for more than 1 min.The changes in the ratio of the reduced to the oxidised states of the nicotinamide-adenine dinucleotide and the cytochromes are correlated to the breakdown of the metabolism (oxidative phosphorylation). But the synthesis of bacteriochlorophyll is induced by a decrease of oxygen partial pressure down to 50- mm Hg (depended from the organism). It has been shown in these experiments that the induction of the synthesis of bacteriochlorophyll in the dark by changing the pO2 is not directly correlated to the change in the redox state of NAD(P)+/NAD(P)H and of the cytochromes b and c2.

Abkürzungen NAD(P) Nicotinamid-adenin-dinucleotid + Nicotinamid-adenin-dinucleotid-phosphat - pO2 Sauerstoffpartialdruck - BChl. Bacteriochlorphyll  相似文献   

11.
Cytochrome (cyt) b-559 absorbance changes in intact chloroplasts were deconvoluted using a previously described LED-Array-Spectrophotometer (Klughammer et al. (1990), Photosynth Res 25: 317–327). When intact chloroplasts were isolated in the presence of ascorbate, approx. 15% of the total cyt b-559 could be transiently oxidised by 200 M H2O2 in the dark. This fraction displays low-potential properties, as it can be also oxidised by menadione in the presence of 5 mM ascorbate. Heat pretreatment increased the size of this fraction by a factor of 3–4. Low concentrations of cyanide (in the M range) prolonged the oxidation time while high concentrations suppressed the oxidation (I50=1.5 mM KCN). The former KCN-effect relates to inhibition of ascorbate dependent H2O2-reduction which is catalysed by ascorbate peroxidase, whereas the latter effect reflects competition between H2O2 and CN for the same binding site at the cytochrome heme. In the light, much lower concentrations of H2O2 were required to obtain oxidation, the amplitude depending on light intensity and on the concentration of the added H2O2, but never exceeding approx. 15% of the total cyt b-559. In the light, but not in the dark, H2O2 also induced the transient oxidation of a cyt f fraction similar in size to the H2O2-oxidisable cyt b-559 fraction. In this case, H2O2 serves as an acceptor of Photosystem I in conjunction with the ascorbate peroxidase detoxification system. Light can also induce oxidation of a 15% cyt b-559 fraction without H2O2-addition, if nitrite is present as electron acceptor and the chloroplasts are depleted of ascorbate. It is concluded that light-induced cyt b-559 oxidation in vivo is likely to be restricted to the H2O2-oxidisable cyt b-559 LP fraction and is normally counteracted by ascorbate.Abbreviations APX ascorbate peroxidase - chl chlorophyll - cyt cytochrome - HP high potential - LP low potential - MDA monodehydroascorbate - PQ plastoquinone - PS I and PS II Photosystems I and II  相似文献   

12.
A new binding site for anions which inhibit the water oxidizing complex (WOC) of Photosystem II in spinach has been identified. Anions which bind to this site inhibit the flash-induced S2/S0 catalase reaction (2H2O22H2O+O2) of the WOC by displacing hydrogen peroxide. Using a mass spectrometer and gas permeable membrane to detect the 32O2 product, the yield and lifetime of the active state of the flash-induced catalase (to be referred to simply as flash-catalase) reaction were measured after forming the S2 or S0-states by a short flash. The increase in flash-catalase activity with H2O2 concentration exhibits a Km=10–20 mM, and originates from an increase in the lifetime by 20-fold of the active state. The increased lifetime in the presence of peroxide is ascribed to formation of the long-lived S0-state at the expense of the unstable S2-state. The anion inhibition site differs from the chloride site involved in stimulating the photolytic water oxidation reaction (2H2OO2+4e-+4H+). Whereas water oxidation requires Cl- and is inhibited with increasing effectiveness by F-CN-N3 -, the flash-catalase reaction is weakly inhibited by Cl-, and with increasing effectiveness by F-CN-, N3 -. Unlike water oxidation, chloride is unable to suppress or reverse inhibition of the flash-catalase reaction caused by these anions. The inhibitor effectiveness correlates with the pKa of the conjugate acid, suggesting that the protonated species may be the active inhibitor. The reduced activity arises from a shortening of the lifetime of the flash-induced catalase active state by 3–10 fold owing to stronger anion binding in the flash-induced states, S2 and S0, than in the dark S-states, S1 and S-1. To account for the paradoxical result that higher anion concentrations are required to inhibit at lower H2O2 concentrations, where S2 forms initially after the flash, than at higher H2O2 concentrations, where S0 forms initially after the flash, stronger anion binding to the S0-state than to the S2-state is proposed. A kinetic model is given which accounts for these equilibria with anions and H2O2. The rate constant for the formation/release of O2 by reduction of S2 in the WOC is <0.4 s-1.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme system Y - BTP bis [tris(hydroxymethyl)methylamino]-propane - CCCP carbonylcyanide m-chlorophenylhyrazone - DCBQ 2,5-dichlorobenzoquinone - DMBQ 2,3-dimethylbenzoquinone - WOC water oxidizing complex  相似文献   

13.
Endogenous and maximum respiration rates of nine purple sulfur bacterial strains were determined. Endogenous rates were below 10 nmol O2 · (mg protein · min)-1 for sulfur-free cells and 15–35 nmol O2 · (mg protein · min)-1 for cells containg intracellular sulfur globules. With sulfide as electron-donating substrate respiration rates were considerably higher than with thiosulfate. Maximum respiration rates of Thiocystis violacea 2711 and Thiorhodovibrio winogradskyi SSP1 (254.8 and 264.2 nmol O2 · (mg protein · min)-1, respectively) are similar to those of aerobic bacteria. Biphasic respiration curves were obtained for sulfur-free cells of Thiocystis violacea 2711 and Chromatium vinosum 2811. In Thiocystis violacea the rapid and incomplete oxidation of thiosulfate was five times faster than the oxidation of stored sulfur. A high affinity of the respiratoty system for oxygen (K m =0.3–0.9 M O2, V max=260 nmol O2 · (mg protein · min)-1 with sulfide as substrate, K m =0.6–2.4 M O2, V max=14–40 nmol O2 · (mg protein · min)-1 with thiosulfate as substrate), for sulfide (K m =0.47 M, V max=650 nmol H2S · (mg protein × min)-1, and for thiosulfate (K m =5–6 M, V max =24–72 nmol S2O 3 2- · (mg protein · min)-1 was obtained for different strains. Respiration of Thiocystis violacea was inhibited by very low concentrations of NaCN (K i =1.7 M) while CO concentrations of up to 300 M were not inhibitory. The capacity for chemotrophic growth of six species was studied in continuous culture at oxygen concentrations of 11 to 67 M. Thiocystis violacea 2711, Amoebobacter roseus 6611, Thiocapsa roseopersicina 6311 and Thiorhodovibrio winogradskyi SSP1 were able to grow chemotrophically with thiosulfate/acetate or sulfide/acetate. Chromatium vinosum 2811 and Amoebobacter purpureus ML1 failed to grow under these conditions. During shift from phototrophic to chemotrophic conditions intracellular sulfur and carbohydrate accumulated transiently inside the cells. During chemotrophic growth bacteriochlorophyll a was below the detection limit.  相似文献   

14.
Basolateral K+ channels and their regulation during aldosterone- and thyroxine-stimulated Na+ transport were studied in the lower intestinal epithelium (coprodeum) of embryonic chicken in vitro. Isolated tissues of the coprodeum were mounted in Ussing chambers and investigated under voltage-clamped conditions. Simultaneous stimulation with aldosterone (1 mol·l-1) and thyroxine (1 mol·l-1) raised short-circuit current after a 1- to 2-h latent period. Maximal values were reached after 6–7 h of hormonal treatment, at which time transepithelial Na+ absorption was more than tripled (77±11 A·cm-2) compared to control (24±8 A·cm-2). K+ currents across the basolateral membrane with the pore-forming antibiotic amphotericin B and application of a mucosal-to-serosal K+ gradient. This K+ current could be dose dependently depressed by the K+ channel blocker quinidine. Fluctuation analysis of the short-circuit current revealed a spontaneous and a blocker-induced Lorentzian noise component in the power density spectra. The Lorentzian corner frequencies increased linearly with the applied blocker concentration. This enabled the calculation of single K+ channel current and K+ channel density. Single K+ channel current was not affected by stimulation, whereas the number of quinidine-sensitive K+ channels in the basolateral membrane increased from 11 to 26·106·cm-2 in parallel to the hormonal stimulation transepithelial Na+ transport. This suggests that the basolateral membrane is a physiological target during synergistic aldosterone and thyroxine regulation of transepithelial Na+ transport for maintaining intracellular K+ homeostasis.Abbreviations f frequency - f c Lorentzian corner frequency - g K single K+ channel conductance - HEPES N-2-hydroxyethylpiperazin-N'-2-ethansulfonic acid - i K single K+ channel current - IAmpho amphotericin B induced K+ current - I sc short-circuit current - I K quinidine blockable K+ current - I max maximally blocked current by quinidine - IC 50 half-maximal blocker concentration - k on, k off on- and off-rate coefficients of reversible single channel block by quinidine - M K number of conducting K+ channels - [Q] quinidine concentration - R t transepithelial resistance - S spectral density - S o Lorentzian plateau - TBM cells toad urinary bladder cell line Present address: University of California at Berkeley, Dept. of Molecular and Cell Biology Berkeley, CA 94720, USA  相似文献   

15.
Summary Transepithelial electrogenic Na+ transport (INa) was investigated in the coprodeum of 20-days-old chicken embryos in Ussing chambers. Short circuit current (Isc) and transepithelial resistance (Rt) were 14.7±4.8 A · cm-2 (n=12) and 0.53±0.09 k · cm-2 (n=12), respectively. INa was calculated from changes in Isc by substitution of mucosal Na+ by (N-methyl-d-glucamine) (NMDG). Isc inversed during Na+ removal, and INa was found to be 27.8±4.7 A · cm-2 (n=12). Amiloride (100 mol · l-1) inhibited only about 60% of INa. Analysis of Isc fluctuations revealed a Lorentzian component in the power density spectrum with a corner frequency of about 57 Hz. This component was not correlated to INa, and its origin is still unclear. Removal of mucosal Ca2+ increased INa about 2.5-fold due to an increase of the amiloride-insensitive component of INa in additionally investigated adult tissues. The results clearly show that this is due to a non-selective cation channel with an apparent order of selectivity Cs+>Na+=K+>Rb+>Li+. The Ca2+ concentration required to block 50% of the Isc was about 18 mol · l-1. The I sc Ca could also be supressed by other divalent cations such as Mg2+ and Ba2+. Additionally, an INa-linked Lorentzian component occurred which dominated the control spectrum with a significantly higher corner frequency (about 88 Hz). The results indicate that Na+ absorption in the coprodeum of the chicken embryo is more complex than in adult hens. However, the Ca2+ sensitivity of INa is similar to comparable effects described for other epithelia. This possibly reflects the existence of two types of amiloride-insensitive apical cation channels as pathways for Na+ absorption, which may be involved to differing degrees in ontogenetic developments of nonselective channels to Na+-specific ion channels.Abbreviations DPL direct-linear-plot method - slope of the back-ground noise component - EGTA ethylene glycol-bi(2-amino-ethylether)-N,N,N,N-tetraacetic acid - f frequency - f c corner frequency of the Lorentzian noise component - G t transepithelial conductance - HEPES N-hydroxyethylpiperazine-N-ethanesulfonic acid - I sc short-circuit current - I Na transepithelial sodium current - I sc Ca Ca2+-sensitive short-circuit current - K m Ca Michaelis-Menten constant for Ca2+ - K B power density of the background noise component at f=1Hz - m mucosal - NMDG N-methyl-D-glucamine - R t transepithelial resistance - s serosal - SEM standard error of mean - S(f) power density of the Lorentzian noise component - S o plateau value of the Lorentzian noise component  相似文献   

16.
Penicillin G (2%, w/v in phosphate buffer, pH 8) was hydrolysed in a flow-through, miniature electro-membrane reactor with the penicillin G acylase immobilized in 5% (w/v) polyacrylamide (diam. 10 mm, thickness 2.6 mm, enzyme activity 24 U ml–1). The conversion of penicillin G increased from 0.15 to almost 0.5 when the electric current applied to the reactor was changed from –600 to +600 A/m2 with a substrate residency of 1 h. Symbols and abbreviations c j p & concentration of component j in product stream (M) c j s & concentration of component j in substrate stream (M) c s o & substrate concentration at reactor inlet (M) C j p=c j p/c S 0 & scaled concentration of component j in product stream C j s=c j s/c S 0 & scaled concentration of component j in substrate stream i & electric current density (A/m2) j & reaction component, j P, Q or S P & main reaction product (6-aminopenicillanic acid) PGA & penicillin G acylase Q & side reaction product (phenylacetic acid) S & substrate (penicillin G) Y s=C P s+C P p & substrate conversion & mean residence time of substrate and product streams in reactor (h) =C Q s+C Q p+C S s+C S s & check-sum of scaled concentrations =C P p/(C P s+C P p) & separation factor of 6-aminopenicillanic acid (0 1)  相似文献   

17.
Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 M and S R-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 M and S R-sulfide=1.8 mM). At values of S R-phosphate below 7.5 M the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K ) for growth on phosphate was estimated to be between 2.6 and 4.1 M. The specific phosphorus content of the cells increased from 0.30 to 0.85 mol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 M. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate; max, maximum specific growth rate - maximum specific growth rate if the substrate were not inhibitory - K saturation constant for growth on phosphate - V max maximum rate of phosphate uptake - K i saturation constant for phosphate uptake - K i inhibition constant for growth in the presence of sulfide - S R concentration of substrate in the inflowing medium  相似文献   

18.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

19.
The effects of Tinopals (cationic benzoxazoles) AMS-GX and 5BM-GX on NADH-oxidase, NADH:ferricyanide reductase, and NADH APAD+ transhydrogenase reactions and energy-linked NAD+ reduction by succinate, catalyzed by NADH:ubiquinone oxidoreductase (Complex I) in submitochondrial particles (SMP), were investigated. AMS-GX competes with NADH in NADH-oxidase and NADH:ferricyanide reductase reactions (K i = 1 M). 5BM-GX inhibits those reactions with mixed type with respect to NADH (K i = 5 M) mechanism. Neither compound affects reverse electron transfer from succinate to NAD+. The type of the Tinopals' effect on the NADH APAD+ transhydrogenase reaction, occurring with formation of a ternary complex, suggests the ordered binding of nucleotides by the enzyme during the reaction: AMS-GX and 5BM-GX inhibit this reaction uncompetitively just with respect to one of the substrates (APAD+ and NADH, correspondingly). The competition between 5BM-GX and APAD+ confirms that NADH is the first substrate bound by the enzyme. Direct and reverse electron transfer reactions demonstrate different specificity for NADH and NAD+ analogs: the nicotinamide part of the molecule is significant for reduced nucleotide binding. The data confirm the model suggesting that during NADH APAD+ reaction, occurring with ternary complex formation, reduced nucleotide interacts with the center participating in NADH oxidation, whereas oxidized nucleotide reacts with the center binding NAD+ in the reverse electron transfer reaction.  相似文献   

20.
Morgunov  I. G.  Kamzolova  S. V.  Sokolov  A. P.  Finogenova  T. V. 《Microbiology》2004,73(3):249-254
The NAD+-dependent isocitrate dehydrogenase of the organic acid–producing yeast Yarrowia lipolytica was isolated, purified, and partially characterized. The purification procedure included four steps: ammonium sulfate precipitation, acid precipitation, hydrophobic chromatography, and gel-filtration chromatography. The enzyme was purified 129-fold with a yield of 31% and had a specific activity of 22 U/mg protein. The molecular mass of the enzyme was found to be 412 kDa. The enzyme consists of eight identical subunits with a molecular mass of about 52 kDa. The K m for NAD+ is 136 M, and that for isocitrate is 581 M. The effect of some intermediates of the citric acid cycle and nucleotides on the enzyme activity was studied. The role of isocitrate dehydrogenase (NAD+) in the overproduction of citric and keto acids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号