首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Several aggregation-prone RNA-binding proteins, including FUS, EWS, TAF15, hnRNP A1, hnRNP A2, and TDP-43, are mutated in neurodegenerative diseases. The nuclear–cytoplasmic distribution of these proteins is controlled by proteins in the karyopherin family of nuclear transport factors (Kaps). Recent studies have shown that Kaps not only transport these proteins but also inhibit their self-association/aggregation, acting as molecular chaperones. This chaperone activity is impaired for disease-causing mutants of the RNA-binding proteins. Here, we review physical data on the mechanisms of self-association of several disease-associated RNA-binding proteins, through liquid–liquid phase separation and amyloid fiber formation. In each case, we relate these data to biophysical, biochemical, and cell biological data on the inhibition of self-association by Kaps. Our analyses suggest that Kaps may be effective chaperones because they contain large surfaces with diverse physical properties that enable them to engage multiple different regions of their cargo proteins, blocking self-association.  相似文献   

2.
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA–protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein–protein and RNA–protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.  相似文献   

3.
4.
Many RNA-binding proteins have modular structures and are composed of multiple repeats of just a few basic domains that are arranged in various ways to satisfy their diverse functional requirements. Recent studies have investigated how different modules cooperate in regulating the RNA-binding specificity and the biological activity of these proteins. They have also investigated how multiple modules cooperate with enzymatic domains to regulate the catalytic activity of enzymes that act on RNA. These studies have shown how, for many RNA-binding proteins, multiple modules define the fundamental structural unit that is responsible for biological function.  相似文献   

5.
6.
Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein-protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs.  相似文献   

7.
8.
The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.  相似文献   

9.
There is growing evidence that metabolic enzymes may act as multifunctional proteins performing diverse roles in cellular metabolism. Among these functions are the RNA-binding activities of NAD(+)-dependent dehydrogenases. Previously, we have characterized the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an RNA-binding protein with preference to adenine-uracil-rich sequences. In this study, we used GST-GAPDH fusion proteins generated by deletion mutagenesis to search for the RNA binding domain. We established that the N-terminal 43 amino acid residues of GAPDH, which correspond to the first mononucleotide-binding domain of the NAD(+)-binding fold is sufficient to confer RNA-binding. We also provide evidence that this single domain, although it retains most of the RNA-binding activity, loses sequence specificity. Our results suggest a molecular basis for RNA-recognition by NAD(+)-dependent dehydrogenases and (di)nucleotide-binding metabolic enzymes that had been reported to have RNA-binding activity with different specificity. To support this prediction we also identified other members of the family of NAD(+)-dependent dehydrogenases with no previous history of nucleic acid binding as RNA binding proteins in vitro. Based on our findings we propose the addition of the NAD(+)-binding domain to the list of RNA binding domains/motifs.  相似文献   

10.
RNA-binding proteins are key regulators of plant gene expression. Consistent with this, the Arabidopsis genome encodes many RNA-binding proteins that are genetically required for normal development and for responding to environmental changes. However, the direct RNA targets and RNA processing events that these RNA-binding proteins control are poorly understood. In order to facilitate the functional characterization of RNA-binding proteins, we have applied the RNA immunoprecipitation assay to Arabidopsis. Working with the U2B"–U2 snRNA interaction as a model experimental system, we show that treatment of intact plants with formaldehyde allows immunocapture of U2 snRNA using antibodies that recognize U2B" fused to the generic GFP tag. When coupled with recent developments in whole-genome tiling arrays and high-throughput next-generation sequencing, this combination of procedures and technology has the potential to allow systematic functional analysis of plant RNA-binding proteins.  相似文献   

11.
RNase II is a single-stranded-specific 3'-exoribonuclease that degrades RNA generating 5'-mononucleotides. This enzyme is the prototype of an ubiquitous family of enzymes that are crucial in RNA metabolism and share a similar domain organization. By sequence prediction, three different domains have been assigned to the Escherichia coli RNase II: two RNA-binding domains at each end of the protein (CSD and S1), and a central RNB catalytic domain. In this work we have performed a functional characterization of these domains in order to address their role in the activity of RNase II. We have constructed a large set of RNase II truncated proteins and compared them to the wild-type regarding their exoribonucleolytic activity and RNA-binding ability. The dissociation constants were determined using different single- or double-stranded substrates. The results obtained revealed that S1 is the most important domain in the establishment of stable RNA-protein complexes, and its elimination results in a drastic reduction on RNA-binding ability. In addition, we also demonstrate that the N-terminal CSD plays a very specific role in RNase II, preventing a tight binding of the enzyme to single-stranded poly(A) chains. Moreover, the biochemical results obtained with RNB mutant that lacks both putative RNA-binding domains, revealed the presence of an additional region involved in RNA binding. Such region, was identified by sequence analysis and secondary structure prediction as a third putative RNA-binding domain located at the N-terminal part of RNB catalytic domain.  相似文献   

12.
13.
Many steps in the control of gene expression are dependent on RNA-binding proteins, most of which are bi-functional, in as much as they both bind to RNA and interact with other protein partners in a functional complex. A powerful approach to study the functional properties of these proteins in vivo, independently of their RNA-binding ability, is to attach or tether them to specifically engineered reporter mRNAs whose fate can be easily followed. Two tethering systems have been mainly used in eukaryotic cells, namely the MS2 coat protein system and the lambda N-B box system. In this review, we firstly describe several studies in which these tethering systems have been used and provide an overview of these applications. We next describe the major features of these two systems, and, finally, we highlight a number of points that should be considered when designing experiments using this approach.  相似文献   

14.
15.
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.  相似文献   

16.
The stability of RNAs bearing AU-rich elements in their 3'-UTRs, and thus the level of expression of their protein products, is regulated by interactions with cytoplasmic RNA-binding proteins. Binding by HuR generally leads to mRNA stabilization and increased protein production, whereas binding by AUF1 isoforms generally lead to rapid degradation of the mRNA and reduced protein production. The exact nature of the interplay between these and other RNA-binding proteins remains unclear, although recent studies have shown close interactions between them and even suggested competition between the two for binding to their cognate recognition sequences. Other recent reports have suggested that the sequences recognized by the two proteins are different. We therefore performed a detailed in vitro analysis of the binding site(s) for HuR and AUF1 present in androgen receptor mRNA to define their exact target sequences, and show that the same sequence is contacted by both proteins. Furthermore, we analysed a proposed HuR target within the 3'-UTR of MTA1 mRNA, and show that the contacted bases lie outside of the postulated motif and are a better match to a classical ARE than the postulated motif. The defining features of these HuR binding sites are their U-richness and single strandedness.  相似文献   

17.
Many steps in the control of gene expression are dependent on RNA-binding proteins, most of which are bi-functional, in as much as they both bind to RNA and interact with other protein partners in a functional complex. A powerful approach to study the functional properties of these proteins in vivo, independently of their RNA-binding ability, is to attach or tether them to specifically engineered reporter mRNAs whose fate can be easily followed. Two tethering systems have been mainly used in eukaryotic cells, namely the MS2 coat protein system and the lambda N-B box system. In this review, we firstly describe several studies in which these tethering systems have been used and provide an overview of these applications. We next describe the major features of these two systems, and, finally, we highlight a number of points that should be considered when designing experiments using this approach.  相似文献   

18.
Defects in RNA-binding proteins have been implicated in human genetic disorders. However, efforts in understanding the functions of these proteins have been hampered by the inability to obtain their mRNA substrates. To identify cognate cellular mRNAs associated with an RNA-binding protein, we devised a strategy termed isolation of specific nucleic acids associated with proteins (SNAAP). The SNAAP technique allows isolation and subsequent identification of these mRNAs. To assess the validity of this approach, we utilized cellular mRNA and protein from K562 cells and alphaCP1, a protein implicated in a-globin mRNA stability, as a model system. Immobilization of an RNA-binding protein with the glutathione-S-transferase (GST) domain enables isolation of mRNA within an mRNP context and the identity of the bound mRNAs is determined by the differential display assay. The specificity of protein-RNA interactions was considerably enhanced when the interactions were carried out in the presence of cellular extract rather than purified components. Two of the mRNAs specifically bound by alphaCP1 were mRNAs encoding the transmembrane receptor protein, TAPA-1, and the mitochondrial cytochrome c oxidase subunit II enzyme, coxII. A specific poly(C)-sensitive complex formed on the TAPA-1 and coxII 3' UTRs consistent with the binding of aCP1. Furthermore, direct binding of purified alphaCP proteins to these 3' UTRs was demonstrated and the binding sites determined. These results support the feasibility of the SNAAP technique and suggest a broad applicability for the approach in identifying mRNA targets for clinically relevant RNA-binding proteins that will provide insights into their possible functions.  相似文献   

19.
L Ye  M Sugiura 《Nucleic acids research》1992,20(23):6275-6279
Five ribonucleoproteins (or RNA-binding proteins) from tobacco chloroplasts have been identified to date; each of these contains an acidic N-terminal domain (24-64 amino acids) and two conserved RNA-binding domains (82-83 amino acids). All five ribonucleoproteins can bind to ssDNA and dsDNA but show high specificity for poly(G) and poly(U). Here we present the nucleic acid binding activity of each domain using a series of deletion mutant proteins made in vitro from the chloroplast 29 kDa ribonucleoproteins. The acidic domain does not have a positive effect on binding activities and proteins lacking this domain show higher affinities for nucleic acids than the wild-type proteins. Mutant proteins containing single RNA-binding domains can bind to poly(G) and poly(U), though with lower affinities than proteins containing two RNA-binding domains. The spacer region (11-37 amino acids) between the two RNA-binding domains does not interact with poly(G) or poly(U) by itself, but is required for the additive activity of the two RNA-binding domains. Proteins consisting of two RNA-binding domains but lacking the spacer have the same activity as those containing only one RNA-binding domain. Possible roles for each domain in chloroplast ribonucleoproteins are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号