首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
R Shogren  T A Gerken  N Jentoft 《Biochemistry》1989,28(13):5525-5536
The effect of carbohydrate on the conformation and chain dimensions of mucous glycoproteins was investigated by using light-scattering and circular dichroism studies of native, asialo, and deglycosylated (apo) ovine submaxillary gland mucin (OSM). OSM is a large glycoprotein that is extensively O-glycosylated by the disaccharide alpha-NeuNAc(2-6)alpha-GalNAc-O-Ser/Thr. Measurements of root mean square radius of gyration, (Rg2)1/2, and hydrodynamic radius, Rh, for OSM and its derivatives were carried out as a function of molecular weight by using static and dynamic light-scattering techniques. The results were fit to the wormlike chain model for describing the dimensions of extended polymer chains. By use of this model, values of h, the length per amino acid residue, and q, the persistence length, which is a measure of chain stiffness, were obtained. These values were then used to assess the conformation and degree of chain extension of intact OSM and its partially and totally deglycosylated derivatives. Native and asialo mucin are found to be highly extended random coils, with asialo mucin having a somewhat less extended structure than intact mucin. Upon the complete removal of the carbohydrate side chains, the extended structure characteristic of intact and asialo mucin collapses to chain dimensions typical of denatured globular proteins. Conformational analyses based on the rotational isomeric state model were also performed by using the probability maps of N-acetyl-O-(GalNAc)-Thr-N-methylamide as starting conformations for native and asialo mucin. The results suggest that both the glycosylated and nonglycosylated residues in native mucin may occupy a small region of conformational space having -90 degrees less than phi less than -60 degrees and 60 degrees less than psi less than 180 degrees, while a slightly broader range is found to fit asialo mucin. The proposed conformations obtained for these mucins are consistent with their circular dichroism spectra. Significantly larger ranges of phi and psi values were obtained for apo mucin, as would be expected from its circular dichroism spectra and increased flexibility. These results indicate the expanded mucin structure is the direct result of peptide core glycosylation. These observations together with the results of earlier studies indicate that steric interactions of the O-linked GalNAc residue with the peptide core are primarily responsible for the expanded mucin structure and that these perturbations extend to the nonglycosylated amino acid residues. This expanded mucin conformation must be a significant determinant of the viscoelastic properties of these molecules in solution.  相似文献   

2.
The solution structure of native and systematically modified ovine submaxillary mucin (OSM) has been probed by proton NMR spectroscopic methods. Most of the resonances in the spectra have been tentatively assigned to the peptide and O-linked disaccharide, alpha-N-acetylneuraminic acid 2----6 alpha-N-acetylgalactosamine protons. On the basis of the observed chemical shifts, spectral resolution, and behavior of the exchangeable protons it is concluded the mucin possesses internal segmental flexibility and exists in solution as a random coil peptide. No long-lived interresidue peptide or carbohydrate hydrogen bonds were detected. The removal of (i) the C8 and C9 carbons of the sialic acid residue, (ii) the entire sialic acid residue, and (iii) the complete disaccharide side chain resulted in no significant changes in peptide core conformation. A limited set of proton spin coupling constants and nuclear Overhauser enhancements has been obtained for the threonine glycopeptide side chains in native and modified mucin. The results are consistent with the previously reported conformations for the (1----6) linkage in oligosaccharides and the threonyl glycosidic linkage in glycopeptides. The OSM disaccharide may exist as a extended linear structure with rotational freedom about the GalNAc C5-C6 bond, while the threonine glycosidic linkage appears to be sterically constrained, although multiple conformations about the threonine C beta-O gamma bond may be allowed. The small chemical shift perturbations detected in the glycosylated threonine methyl protons and the GalNAc carbons upon removal of the terminal sialic acid residue are consistent with this model.  相似文献   

3.
T A Gerken  N Jentoft 《Biochemistry》1987,26(15):4689-4699
Nearly all of the resonances in the 13C NMR spectrum of porcine submaxillary mucin glycoprotein (PSM) have been assigned to the peptide core carbons and to the carbons in the eight different oligosaccharide side chains that arise from the incomplete biosynthesis of the sialylated A blood group pentasaccharide (alpha-GalNAc(1-3) [alpha-Fuc(1-2)]-beta-Gal(1-3) [alpha-NeuNGl(2-6)]- alpha-GalNAc-O-Ser/Thr). By use of these assignments, a nearly complete structural analysis of intact PSM has been performed without resorting to degradative chemical methods. Considerable structural variability in the carbohydrate side chains was observed between mucins obtained from different animals, while no variability was observed between glands in a single animal. The dynamics of the PSM core and carbohydrate side chains were examined by using the carbon-13 nuclear magnetic resonance relaxation times and nuclear Overhauser enhancements of each assigned carbon resonance. The peptide core of PSM exhibits internal segmental flexibility that is virtually identical with that of ovine submaxillary mucin (OSM), whose carbohydrate side chain consists of the alpha-NeuNAc(2-6)alpha-GalNAc disaccharide. The longer oligosaccharide side chains of PSM, therefore, have no significant effect on peptide core mobility compared to the shorter side chains of native OSM or asialo-OSM. Although the dynamics of the shorter carbohydrate side chains shared by both OSM and PSM appear to be identical, the A and H blood group structures in PSM have reduced mobilities, indicating that the glycosidic linkages of the terminal sugars in these determinants are relatively inflexible. These results differ from most reports of glycoprotein dynamics, which typically find the terminal carbohydrate residues to be undergoing rapid internal rotation about their terminal glycosidic bonds. The results reported here are consistent with previous studies on the conformations of the A and H determinants derived from model oligosaccharides and further indicate that the conformations of these determinants are unchanged when covalently bound to the mucin peptide core. In spite of their carbohydrate side-chain heterogeneity, mucins appear to be ideal glycoproteins for the study of O-linked oligosaccharide conformation and dynamics and for the study of the effects of glycosylation on polypeptide conformation and dynamics.  相似文献   

4.
Mucin-specific lectin from Sambucus sieboldiana (SSA-M) reacts in Western blotting and ELISA with mucins from porcine stomach, bovine and ovine submaxillary glands, the human milk fat globule membrane, in vitro human ovarian, breast and colonic tumor cell lines, and mucins produced in vivo in the ascites of patients with endometrial and ovarian tumors, but not with fetal bovine fetuin or human transferrin. Sialidase treatment of these mucins led to an increase in the binding of SSA-M, suggesting that sialic acid is not part of the binding site for this lectin. Furthermore, sialic acid did not inhibit lectin binding. Treatment of asialomucin with O-glycanase decreased the binding of SSA-M, confirming the reactivity of the lectin with an O-linked carbohydrate. Treatment of mucins with trifluoromethanesulfonic acid, which removes all but core carbohydrate, led to an increase in the binding of SSA-M, suggesting that the lectin reacts with O-linked core glycans. Indeed, the increased reactivity after sialidase treatment of ovine submaxillary mucin suggests the lectin reacts with peptide-linked N-acetylgalactosamine (GalNAc), since more than 98% of the glycan chains attached to this mucin are sialylated GalNAc. The binding of SSA-M to sialidase-treated porcine mucin was inhibited strongly by GalNAc and disaccharides containing galactose (lactose, melibiose, and N-acetyllactosamine) but not by free galactose (Gal), suggesting that the glycan for optimum binding is Gal beta(1-3)GalNAc. This pattern of inhibition was different to other core glycan-reactive lectins tested, indicating that SSA-M is distinct, and should be of use in the isolation and characterisation of mucins and O-linked glycans.  相似文献   

5.
Carbon-13 NMR spectroscopic studies of native and sequentially deglycosylated ovine submaxillary mucin (OSM) have been performed to examine the effects of glycosylation on the conformation and dynamics of the peptide core of O-linked glycoproteins. OSM is a large nonglobular glycoprotein in which nearly one-third of the amino acid residues are Ser and Thr which are glycosylated by the alpha-Neu-NAc(2-6)alpha-GalNAc- disaccharide. The beta-carbon resonances of glycosylated Ser and Thr residues in intact and asialo mucin display considerable chemical shift heterogeneity which, upon the complete removal of carbohydrate, coalesces to single sharp resonances. This chemical shift heterogeneity is due to peptide sequence variability and is proposed to reflect the presence of sequence-dependent conformations of the peptide core. These different conformations are thought to be determined by steric interactions of the GalNAc residue with adjacent peptide residues. The absence of chemical shift heterogeneity in apo mucin is taken to indicate a loss in the peptide-carbohydrate steric interactions, consistent with a more relaxed random coiled structure. On the basis of the 13C relaxation behavior (T1 and NOE) the dynamics of the alpha-carbons appear to be unique to each amino acid type and glycosylation state, with alpha-carbon mobilities decreasing in the order Gly greater than Ala = Ser greater than Thr much greater than monoglycosylated Ser/Thr approximately greater than disaccharide linked Ser/Thr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Structural properties of porcine submaxillary gland apomucin   总被引:6,自引:0,他引:6  
Porcine submaxillary gland mucin was deglycosylated with a mixture of pure glycosidases to give apomucin containing less than 1% carbohydrate. The resulting apomucin freed of glycosidases was found to contain nine amino acids: threonine, serine, glutamic acid, proline, glycine, alanine, valine, isoleucine, and arginine. Serine, threonine, glycine, and alanine comprise 77% of the composition. The molecular weight of apomucin was 96,500 as determined by gel filtration in guanidine hydrochloride. Its Stokes radius was greater than 68.6 A, a far larger value than expected for a globular protein with Mr = 96,500. Circular dichroism spectroscopy of apomucin suggests that it contains 42% aperiodic or "other" structure, 40% beta-turns, 10% antiparallel pleated sheet, and 8% helical structures. The predicted secondary structure of a 50-residue peptide from ovine submaxillary gland mucin resembles the circular dichroism predictions, being dominated by turns that would lead to an extended nonglobular structure. Analysis for the secondary structure of a 36-residue tryptic peptide derived from porcine submaxillary gland apomucin predicts a similar structure. It is concluded that apomucin is likely devoid of traditional secondary structure and serves as a scaffold upon which oligosaccharides are added in O-glycosidic linkage. When sufficient sialic acid is present in the oligosaccharides, native highly viscous mucin containing about two-thirds carbohydrate by weight is obtained.  相似文献   

7.
Little is known of the degree that polypeptide sequence and the local environment modulate the structures of O-linked glycans. Toward this understanding, the site-specific mono- (GalNAc-O-), di- (beta-Gal-1,3-alpha-GalNAc-O-), and trisaccharide (alpha-Fuc-1,2-beta-Gal-1,3-alpha-GalNAc-O-) distributions have been determined for 29 of the 31 O-glycosylated Ser/Thr residues in the tandem repeat domains of blood group A-negative porcine submaxillary gland mucin. The glycosylation patterns obtained from three individual animals are in agreement with earlier incomplete determinations on a pooled mucin (Gerken, T. A., Owens, C. L., and Pasumarthy, M. (1997) J. Biol. Chem. 272, 9709-9719; Gerken, T. A., Owens, C. L., and Pasumarthy, M. (1998) J. Biol. Chem. 273, 26580-26588), confirming that the addition of the peptide-linked GalNAc and its substitution by beta-1,3-Gal are sensitive to local peptide sequence in a highly reproducible manner in vivo. The present data further support earlier suggestions of an inverse correlation of the density of hydroxyamino acid residues (and by inference the density of peptide GalNAc) with the extent of substitution of the peptide-linked GalNAc by beta-1,3-Gal. This effect is highly correlated for Ser-linked glycans but not for Thr-linked glycans. A similar correlation is observed with respect to the in vivo peptide GalNAc glycosylation pattern. In contrast, the addition of alpha-1,2-Fuc to beta-Gal shows no apparent correlation with hydroxyamino acid density, although a marked elevation in the fucosylation of Ser-linked glycans compared with Thr-linked glycans is observed. The above effects may represent both steric and conformational factors acting to alter the relative accessibility and activity of the glycosyltransferases toward substrate. These results demonstrate that the porcine submaxillary gland core 1 beta 3-galactosyltransferase and alpha2-fucosyltransferase exhibit unique peptide/glycopeptide sensitivities that may provide mechanisms for the modulation of O-linked side chain structures.  相似文献   

8.
A chemical method for the deglycosylation of proteins   总被引:8,自引:0,他引:8  
A simple and rapid chemical method for the deglycosylation of glycoproteins has been developed. The method involves the incubation of protein with trifluoromethanesulfonic acid at 0 degrees C from 0.5 to 2 h followed by the neutralization of the acid with aqueous pyridine at -20 degrees C. The method has been applied effectively to fetuin, ovine submaxillary mucin, ovine lutropin, and human choriogonadotropin. In 1 h almost all of N- and O-linked carbohydrates from ovine lutropin and human choriogonadotropin, with the exception of the linkage N-acetylglucosamine or N-acetylgalactosamine, were removed. Similarly, in 1 h all N-linked carbohydrates, excepting again the linkage sugar, in fetuin were degraded. Longer reaction times up to 2 h completely removed the O-linked carbohydrate chains from fetuin and ovine submaxillary mucin. The deglycosylated hormones thus prepared retained their immunological and biological activities.  相似文献   

9.
Pancreatic mucins consist of core proteins that are decorated with carbohydrate structures. Previous studies have identified at least two physically distinct populations of mucins produced by a pancreatic adenocarcinoma cell line (HPAF); one is the MUC1 core protein, which includes an oligosaccharide structure identified by a monoclonal antibody (MAb) recognizing the DU-PAN-2 epitope. In this study, we purified and characterized a second mucin fraction, which also shows reactivity with the DU-PAN-2 antibody, but which has an amino acid composition that is not consistent with the MUC1 core protein. This new mucin was purified by ammonium sulfate precipitation, molecular sieve chromatography, and density gradient centrifugation. It eluted in the void volume of a Sepharose 4B column together with an associated low molecular weight protein, which could be further resolved. The mucin is highly polyanionic due to numerous sulfated and sialylated saccharide chains. Carbohydrate analyses of the purified mucin showed the presence of galactose, glucosamine, galactosamine, and sialic acid, but no mannose, glucose, or uronic acid. The purified and deglycosylated mucin shows no reactivity with anti-MUC1 apomucin antibody, but reacts with antiserum against deglycosylated tracheal mucins and antiserum against the MUC4 tandem repeat peptide. Analysis of mucin expression in HPAF cells revealed high levels of MUC1 and MUC4 mRNA, and moderate levels of MUC5AC and MUC5B mRNA. The amino acid composition of the purified mucin shows a high degree of similarity to the MUC4 core protein.  相似文献   

10.
As part of investigations on the role of the UDP-GalNAc-ribosome complex in the initial O-glycosylation of proteins, we have isolated from porcine gastric mucosa GalNAc-transferase, mucin and apomucin, and its three fractions containing carbohydrate in the amounts: I - 1.6%, II - 0.65% and III - 0.00% (wt/wt) of apomucin mass. Amino acid analysis showed that fractions I and II contained slightly higher amounts of serine and threonine as compared to native mucin and apomucin. The short peptide Pro-Thr-Ser-Ser-Pro-Ile-Ser-Thr was the most effectively glycosylated. Our apomucin preparations are also good acceptors of GalNAc and can be used for testing of O-glycosylation in vitro.  相似文献   

11.
Bovine submaxillary mucin was purified and subjected to chemical deglycosylation by treatment at 20 degrees C with either anhydrous hydrogen fluoride or trifluoromethane sulfonic acid. Virtually all of the sialic acid, galactose, fucose, and over 90% of the N-acetylhexosamines were removed by these treatments. The amino acid compositions of the deglycosylated and native mucins were similar indicating that chemical deglycosylation did not cause significant degradation of the protein. Antiserum specific for the deglycosylated bovine submaxillary mucin was produced by immunization of rabbits with the deglycosylated mucin. RNA was isolated from bovine submaxillary glands by extraction with guanidine hydrochloride and further fractionated by chromatography on oligo(dT)-cellulose to yield poly(A)+ mRNA. The poly(A)+ mRNA was translated in a rabbit reticulocyte cell-free translation system using [35S]methionine, [3H]leucine, [3H]threonine, [3H]proline, or [3H]serine as radiolabel and the translation products were analyzed by gel electrophoresis and fluorography before and after immunoprecipitation with the antiserum. A labeled product of molecular weight 60,000 was present in the immunoprecipitates obtained in the absence but not in the presence of the unlabeled competitor deglycosylated mucin. It is concluded that the primary translation product of the bovine submaxillary gland gene is a 60,000-dalton protein and that the monomer subunit of the mucin is about 170,000. Thus, in the native state the mucin consists of several self-associating subunits.  相似文献   

12.
Ovarian cyst fluid has been a valuable source of the mucins (traditionally termed ‘blood group substances’) that were used for the elucidation of the structures of the ABO Lewis blood group determinants, but the identity of the mucin peptide core(s) carrying these carbohydrate specificities is not known. An ovarian cyst fluid mucin was purified, deglycosylated with HF and digested with trypsin or chymotrypsin to yield a number of peptides. Amino acid sequencing of these peptides yielded five different sequences which showed complete or partial homology to the MUC-6 apomucin deduced from DNA sequencing. As no other sequences were identified, it is concluded that MUC-6 is the major mucin core structure of ovarian cyst fluid mucin.  相似文献   

13.
Altered expression of mucin gene products has been described in many epithelial cancers including colorectal cancer. However, mucins are heavily O-glycosylated making the study of apomucin expression difficult. In this study, we describe a novel method of chemical deglycosylation of mucin gene products on paraffin embedded formalin-fixed tissue sections. In the normal and cancerous colorectum, our results suggest that alkali-catalyzed -elimination of periodate oxidized glycan method of chemical deglycosylation modifies the structure of carbohydrates sensitive to mild periodate oxidation resulting in less steric hindrance and selectively removes Tn and sialyl-Tn structures, partially exposing the underlying apomucin epitopes. Using this method, we have demonstrated that the MUC1 tandem repeat epitope recognized by MAb 139H2 is masked predominantly due to steric hindrance by carbohydrate structures whereas the MUC2 tandem repeat epitope recognized by MAb CCP58 and pAb MRP and the MUC3 tandem repeat epitope recognized by pAb M3P are masked by the presence of carbohydrate side chains O-linked to Ser/Thr residues within the epitope. Considerable differences in the level and pattern of expression of the epitopes in the tandem repeat region of apomucins of MUC1, MUC2, and MUC3 were observed between normal and cancerous colorectal cancer tissues. We conclude that this novel chemical deglycosylation method that causes selective cleavage of distinct glycans will be useful in unmasking various mucin gene products and glycoproteins containing similar O-glycosidic linkages in the tissue sections of formalin-fixed paraffin embedded normal and pathological tissues.  相似文献   

14.
Antibodies prepared against enzymatically deglycosylated porcine submaxillary gland mucin (apomucin), which were unreactive with native mucin and its partially deglycosylated derivatives, were used to immunolocalize apomucin in situ. Electron microscopy of sections of Lowicryl K4M-embedded tissue reacted successively with antibodies and protein A-gold complexes showed apomucin exclusively in mucous cells within the rough endoplasmic reticulum, transitional elements of the endoplasmic reticulum, and vesicles at the cis side of the Golgi apparatus. The Golgi apparatus, forming mucous droplets, and mucous droplets contained no apomucin. Although the rough endoplasmic reticulum contained most of the apomucin in mucous cells, some cisternae of the endoplasmic reticulum and the nuclear envelope were devoid of apomucin. Examination of tissue sections treated with the glycosidases used to prepare apomucin revealed immunolabel for apomucin throughout the secretory pathway. Colloidal gold coated with Helix pomatia lectin was used to detect nonreducing N-acetylgalactosamine residues. In mucin-producing cells lectin-gold was found in the mucous droplets, the forming mucous droplets, and throughout the Golgi apparatus but mostly in the cis portion of this organelle. In tissue sections reacted successively with lectin-gold and anti-apomucin/protein A-gold, both types of gold complex could be found in the cis side of the Golgi apparatus. These data indicate that the O-glycosylation of mucin is a posttranslational event that occurs in the Golgi apparatus and begins in the cis side of the Golgi apparatus.  相似文献   

15.
Vega N  Pérez G 《Phytochemistry》2006,67(4):347-355
A lectin was isolated and characterised from Salvia bogotensis seeds. Removal of the abundant pigments and polysaccharides, which are present in seeds, was an essential step in its purification. Several procedures were assayed and the best suited, including Pectinex treatment, DEAE-cellulose and affinity chromatography, led to a protein being obtained amounting to 18-20mg/100g seeds having high specific agglutination activity (SAA). The lectin specifically agglutinated human Tn erythrocytes and was inhibited by 37mM GalNAc, 0.019mM ovine submaxillary mucin (OSM) or 0.008mM asialo bovine submaxillary mucin (aBSM). Enzyme-linked lectinosorbent assay (ELLSA) revealed strong binding to aOSM and aBSM, corroborating Tn specificity, whereas no binding to fetuin or asialo fetuin was observed. The lectin's monomer MW (38,702Da), amino acid composition, pI, carbohydrate content, deglycosylated form MW, thermal stability and Ca(2+) and Mn(2+) requirements were determined. Evidence of the existence of two glycoforms was obtained. The lectin's specificity and high affinity for the Tn antigen, commonly found in tumour cells, makes this protein a useful tool for immunohistochemical and cellular studies.  相似文献   

16.
Ovarian cyst fluid has been a valuable source of the mucins (traditionally termed "blood group substances") that were used for the elucidation of the structures of the ABO Lewis blood group determinants, but the identity of the mucin peptide core(s) carrying these carbohydrate specificities is not known. An ovarian cyst fluid mucin was purified, deglycosylated with HF and digested with trypsin or chymotrypsin to yield a number of peptides. Amino acid sequencing of these peptides yielded five different sequences which showed complete or partial homology to the MUC-6 apomucin deduced from DNA sequencing. As no other sequences were identified, it is concluded that MUC-6 is the major mucin core structure of ovarian cyst fluid mucin.  相似文献   

17.
The structure of an epitopic carbohydrate recognized by a monoclonal antibody, MLS 102, was determined. A disaccharide, NeuAc alpha (2----6)GalNAc, the major prosthetic group of ovine submaxillary mucin (OSM) and related synthetic glycosides, NeuAc alpha(2----6)GalNAc alpha----Ser, NeuAc alpha(2----6)GalNAc beta----Ser, and NeuAc alpha (2----6)GalNAc beta----propyl, reacted with MLS 102 to similar extents, but the reaction was considerably weaker compared to that of OSM. This difference in reactivity could be ascribed to the occurrence of a cluster of the disaccharide on OSM. Purification of MLS 102-reactive antigens from a Triton X-100 extract of LS 180 cells by means of immunoaffinity chromatography gave mucin fractions (cMLS 102 antigen) with an OSM-like domain. Correlation between the content of the disaccharide, NeuAc alpha(2----6)GalNAc, in mucins and their reactivity with MLS 102 was observed.  相似文献   

18.
A monoclonal antibody directed to Tn antigen   总被引:2,自引:0,他引:2  
A murine monoclonal antibody, MLS 128, that was assigned to an anti-Tn antibody has been established by immunizing mice with human colonic cancer cells (LS 180). MLS 128 bound to mucin glycopeptides from LS 180 cells and their asialo forms to the same extent as well as to ovine submaxillary mucin (OSM) and asialo OSM. Special non-sialylated GalNAc residue(s) attached to a certain peptide region in the antigens seems to be involved in the binding since N-acetylgalactosaminidase treatment of the antigen abolished the binding and pronase digestion diminished the binding markedly.  相似文献   

19.
Human milk beta-N-acetylglucosaminide beta 1 leads to 4-galactosyltransferase (EC 2.4.1.38) was used to galactosylate ovine submaxillary asialomucin to saturation. The major [14C]galactosylated product chain was obtained as a reduced oligosaccharide by beta-elimination under reducing conditions. Analysis by Bio-Gel filtration and gas-liquid chromatography indicated that this compound was a tetrasaccharide composed of galactose, N-acetylglucosamine and reduced N-acetylgalactosamine in a molar ratio of 2:0.9:0.8. Periodate oxidation studies before and after mild acid hydrolysis in addition to thin-layer chromatography revealed that the most probable structure of the tetrasaccharide is Gal beta 1 leads to 3([14C]Gal beta 1 leads to 4GlcNAc beta 1 leads to 6)GalNAcol. Thus it appears that Gal beta 1 leads to 3(GlcNAc beta 1 leads to 6)GalNAc units occur as minor chains on the asialomucin. The potential interference of these chains in the assay of alpha-N-acetylgalactosaminylprotein beta 1 leads to 3-galactosyltransferase activity using ovine submaxillary asialomucin as an acceptor can be counteracted by the addition of N-acetylglucosamine.  相似文献   

20.
Alkaline borohydride reductive cleavage (beta-elimination) of desialylated human kappa-caseinoglycopeptide resulted in the release of a series of oligosaccharides. The smaller-size compounds among them were purified to virtual homogeneity by gel filtration followed by high-performance liquid chromatography. The structures of 9 oligosaccharides were determined by 1H-NMR spectroscopy in conjunction with sugar analysis. The tetrasaccharide Gal beta(1----3)[Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol and various partial structures thereof were characterized. Notably, the disaccharide GlcNAc beta(1----6)GalNAc-ol and the trisaccharide Gal beta(1----4)GlcNAc beta(1----6)GalNAc-ol were identified; they represent a novel type of core structure for mucin-type carbohydrate chains, namely a peptide-linked GalNAc that is mono-substituted at C-6. In addition, some oligosaccharides ending in GlcNAc-ol could be characterized. Their possible origin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号