首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

2.
3.
Bi-directional sex change in the deep-water gobiid fish Trimma yanagitai was examined. The gonads of all individuals consisted of ovarian and testicular elements, and an accessory gonadal structure. In no gonads were both testicular and ovarian parts simultaneously active. Bi-directional sex changes occurred during the rearing experiments in aquaria under conditions of which there was co-existence of two males or plural females. The sex of individuals could be determined by their relative body size or social dominance: the largest individuals acting as male and the remainder as female.  相似文献   

4.
5.
To evaluate the possible role of germ cells on sex differentiation of the gonads in vertebrates, the teleost fish, medaka ( Oryzias latipes ), was used to generate a gonad without germ cells. The germ cell-deficient medaka reveals multiple effects of germ cells on the process of sex differentiation. The previously isolated mutant medaka, hotei , with the excessive number of germ cells may support the contention that the proliferation of germ cells is related to feminization of the gonad. Futhermore, we show that two modes of proliferation for either maintenance of germ cells or commitment to gametogenesis are important components of the sex differentiation of medaka developing gonads. An intimate cross talk between germ cells and gonadal somatic cells during the sex differentiation will be discussed.  相似文献   

6.
Tamoxifen or 4-hydroxytamoxifen were injected either alone or in combination with oestradiol into 4-5 day-old chick embryos in order to study their action on the sex differentiation of the gonads. The results of the histological study of the gonads performed at the stage of 16-19 days warrant the following conclusions: None of both anti-oestrogens exerts an effect on the testes. None of both compounds modifies the sex differentiation of the female gonads. Tamoxifen exerts an antagonistic action on the feminization of the testes by oestradiol. These conclusions do not lend support to the hypothesis according to which oestrogens play a role in normal sex differentiation of the female gonads.  相似文献   

7.
Although sex determination starts in the gonads, this may not be the case for species with temperature sex determination (TSD). Since temperature affects the whole embryo, extragonadal thermosensitive cells may produce factors that induce gonadal sex determination as a secondary event. To establish if gonads of a species with TSD respond directly to temperature, pairs of gonads were cultured, one at female-promoting temperature (FPT) and the contralateral at male-promoting temperature (MPT). Histological and immunohistochemical detection of SOX9 revealed that the response to temperature of isolated gonads was similar to that of the gonads of whole embryos. While gonads cultured at MPT maintained SOX9 expression, it was downregulated in gonads at FPT. Downregulation of SOX9 took longer in gonads cultured at stage 23 than in gonads cultured at stage 24, suggesting that a developmental clock was already established at the onset of culture. To find out if sex commitment occurs in vitro, gonads were switched from FPT to MPT at different days. Results showed that the ovarian pathway was established after 4 days of culture. The present demonstration that gonads have an autonomous temperature detector that regulates SOX9 expression provides a useful starting point from which the molecular pathways underlying TSD can be elucidated.  相似文献   

8.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

9.
Sex Differentiation of Avian Gonads In Vitro   总被引:1,自引:0,他引:1  
The analysis of avian sex differentiation in vitro has beenlimited to the following problems: morphological sex differentiationof gonads cultured in vitro; analysis of the chemical natureof the hormonal secretion; differentiation of germ cells inrelation to their somatic environment. Morphological sex differentiationof avian gonads occurs in vitro. Differentiated gonads of thechick embryo carry out biosynthesis of sex hormones from severalradioactive precursors. Female gonads in particular synthesizeestrogens while male gonads synthesize testosterone. Some experimentshave given evidence of estrogen synthesis by undifferentiatedfemale gonads. Embryonic gonads of quail, like those of chick,are able to synthesize sex steroids from radioactive precursors.However, in the quail and mainly in the testes, a delayed appearanceand a lower activity of the enzyme system 3ß-HSDHs-4-isomerase was found. Histoenzymological results corroboratethe biochemical ones. Combination of culture and grafting experimentshave shown that male germ cells when they are forced into femaledifferentiation by early colonization of a female gonad degenerateafter entering the premeiotic stage. The reasons for this delayedfailure of sex differentiation of "male oocytes" have certainlyto be searched for at the level of perturbation in the mechanismsof meiosis.  相似文献   

10.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

11.
12.
13.
Wild type embryos of the newt Pleurodeles waltl were used to realize parabiosis, a useful model to study the effect of endogenous circulating hormones on gonad development. The genotypic sex of each parabiont (ZZ male or ZW female) was determined early from the analysis of the sex chromosome borne marker peptidase-1. In ZZ/ZZ and ZW/ZW associations, gonads develop according to genetic sex. In ZZ/ZW associations, the ZZ gonads differentiate as normal testes while ZW gonads development shows numerous alterations. At the beginning of sex differentiation, these ZW gonads possess a reduced number of germ cells and a reduced expression of steroidogenic factor 1 and P450-aromatase mRNAs when compared to gonads from ZW/ZW associations. During gonad differentiation, conversely to the control situation, these germ cells do not enter meiosis as corroborated by chromatin status and absence of the meiosis entry marker DMC1; the activity of the estradiol-producing enzyme P450-aromatase is as low as in ZZ gonads. At adulthood, no germ cells are observed on histological sections, consistently with the absence of VASA expression. At this stage, the testis-specific marker DMRT1 is expressed only in ZZ gonads, suggesting that the somatic compartment of the ZW gonad is not masculinized. So, when exposed to ZZ hormones, ZW gonads reach the undifferentiated status but the ovary differentiation does not occur. This gonad is inhibited by a process affecting both somatic and germ cells. Additionally, the ZW gonad inhibition does not occur in the case of an exogenous estradiol treatment of larvae.  相似文献   

14.
At the initial stages of sex differentiation (7.5 and 8.5 days of incubation), chick embryo gonads were treated directly with testosterone or estradiol-17 beta in organ cultures. Chemically-defined media containing cholesterol as a steroid precursor were used. The differentiation of gonads in the 10 to 12-day controls, cultured in media containing no hormones, was close to that of gonads of equivalent age in ovo. Testosterone added to the medium exerted an inhibitory effect on the cortex of the female gonad and a masculinizing one on its medulla. The results of estradiol treatment confirmed the known feminizing effect of that hormone on the male gonad, the meiotic prophase in the genetically male germ cells being initiated in the induced cortex. These data may be interpreted in favour of a bihormonal theory of gonadal sex differentiation in birds, where the predominantly-synthesized male or female hormone in the gonad determines the male or female pattern of development of the corresponding gonad.  相似文献   

15.
In multicellular organisms, determination of sex identity is a complex, multistage process. Sex hormones are synthesized in gonads and fulfill the role of inductors in this process. The effect of androgen is currently well studied. However, the participation of estrogen in the formation of female gonads and female sex on the whole is not much known. Here, we present the results of experimental sex inversion by inhibition of aromatase (an enzyme involved in estrogen synthesis) and tamoxifen (a modulator of estrogen receptors) in chick embryos. It was shown that masculinization depended on the dose of the substance and quantity of injections. Inhibition of aromatase did not block the meiotic prophase in oogoniums. It has been suggested that retinoic acid and estrogens have different mechanisms of effect on oogenesis. Proteins and nucleoproteins interacting with estrogen receptor 1 and their gene localization in human and chicken genomes have been shown for the first time.  相似文献   

16.
The chicken embryo represents a suitable model for studying vertebrate sex determination and gonadal sex differentiation. While the basic mechanism of sex determination in birds is still unknown, gonadal morphogenesis is very similar to that in mammals, and most of the genes implicated in mammalian sex determination have avian homologues. However, in the chicken embryo, these genes show some interesting differences in structure or expression patterns to their mammalian counterparts, broadening our understanding of their functions. The novel candidate testis-determining gene in mammals, DMRT1, is also present in the chicken, and is expressed specifically in the embryonic gonads. In chicken embryos, DMRT1 is more highly expressed in the gonads and Müllerian ducts of male embryos than in those of females. Meanwhile, expression of the orphan nuclear receptor, Steroidogenic Factor 1 (SF1) is up-regulated during ovarian differentiation in the chicken embryo. This contrasts with the expression pattern of SF1 in mouse embryos, in which expression is down-regulated during female differentiation. Another orphan receptor initially implicated in mammalian sex determination, DAX1, is poorly conserved in the chicken. A chicken DAX1 homologue isolated from a urogenital ridge library lacked the unusual DNA-binding motif seen in mammals. Chicken DAX1 is autosomal, and is expressed in the embryonic gonads, showing somewhat higher expression in female compared to male gonads, as in mammals. However, expression is not down-regulated at the onset of testicular differentiation in chicken embryos, as occurs in mice. These comparative data shed light on vertebrate sex determination in general.  相似文献   

17.
Tooth development is a complex process including successive stages of initiation, morphogenesis, and histogenesis. The role of the Dlx family of homeobox genes during the early stages of tooth development has been widely analyzed, while little data has been reported on their role in dental histogenesis. The expression pattern of Dlx2 has been described in the mouse incisor; an inverse linear relationship exists between the level of Dlx2 expression and enamel thickness, suggesting a role for Dlx2 in regulation of ameloblast differentiation and activity. In vitro data have revealed that DLX homeoproteins are able to regulate the expression of matrix proteins such as osteocalcin. The aim of the present study was to analyze the expression and function of Dlx genes during amelogenesis. Analysis of Dlx2/LacZ transgenic reporter mice, Dlx2 and Dlx1/Dlx2 null mutant mice, identified spatial variations in Dlx2 expression within molar tooth germs and suggests a role for Dlx2 in the organization of preameloblastic cells as a palisade in the labial region of molars. Later, during the secretory and maturation stages of amelogenesis, the expression pattern in molars was found to be similar to that described in incisors. The expression patterns of the other Dlx genes were examined in incisors and compared to Dlx2. Within the ameloblasts Dlx3 and Dlx6 are expressed constantly throughout presecretory, secretory, and maturation stages; during the secretory phase when Dlx2 is transitorily switched off, Dlx1 expression is upregulated. These data suggest a role for DLX homeoproteins in the morphological control of enamel. Sequence analysis of the amelogenin gene promoter revealed five potential responsive elements for DLX proteins that are shown to be functional for DLX2. Regulation of amelogenin in ameloblasts may be one method by which DLX homeoproteins may control enamel formation. To conclude, this study establishes supplementary functions of Dlx family members during tooth development: the participation in establishment of dental epithelial functional organization and the control of enamel morphogenesis via regulation of amelogenin expression.  相似文献   

18.
The sex determining gene is divergent among different animal species. However, sox9 is up-regulated in the male gonads in a number of species in which it is the essential regulator of testis determination. It is therefore often discussed that the sex determining gene-sox9 axis functions in several vertebrates. In our current study, we show that sox9b in the medaka (Oryzias latipes) is one of the orthologues of mammalian Sox9 at syntenic and expression levels. Medaka sox9b affects the organization of extracellular matrices, which represents a conserved role of sox9, but does not directly regulate testis determination. We made this determination via gene expression and phenotype analyses of medaka with different copy numbers of sox9b. Sox9b is involved in promoting cellular associations and is indispensible for the proper proliferation and survival of germ cells in both female and male medaka gonads. Medaka mutants that lack sox9b function exhibit a seemingly paradoxical phenotype of sex reversal to male. This is explained by a reduction in the germ cell number associated with aberrant extracellular matrices. Together with its identified roles in other vertebrate gonads, a testis-determining role for Sox9 in mammals is likely to have been neofunctionalized and appended to its conserved role in germ cell maintenance.  相似文献   

19.
20.
The current views of sex determination in birds are considered mostly with the example of Gallus gallus domesticus, the species best studied in this respect. Data on the appearance of primordial germ cells, their migration to the primordial gonads, the role of hormonal factors in the regulation of sex differentiation, the sex chromosomes, putative genetic mechanisms of sex determination, and a possible contribution of dosage compensation are described. The review discusses the two best-grounded hypotheses on the roles of the Z and W chromosomes in sex determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号