共查询到20条相似文献,搜索用时 0 毫秒
1.
The chemical structure of the free lipid A isolated from Mesorhizobium huakuii IFO 15243(T) was elucidated. Lipid A is a mixture of at least six species of molecules whose structures differ both in the phosphorylation of sugar backbone and in fatty acylation. The backbone consists of a beta (1'-->6) linked 2,3-diamino-2,3-dideoxyglucose (DAG) disaccharide that is partly substituted by phosphate at position 4'. The aglycon of the DAG-disaccharide has been identified as alpha-D-galacturonic acid. All lipid A species carry four amide-linked 3-hydroxyl fatty residues. Two of them have short hydrocarbon chains (i.e. 3-OH-i-13:0) while the other two have longer ones (i.e. 3-OH-20:0). Distribution of 3-hydroxyl fatty acids between the reducing and nonreducing DAG is symmetrical. The nonpolar as well as (omega-1) hydroxyl long chain fatty acids are components of acyloxyacyl moieties. Two acyloxyacyl residues occur exclusively in the nonreducing moiety of the sugar backbone but their distribution has not been established yet. The distal DAG amide-bound fatty acid hydroxyls are not stoichiometrically substituted by ester-linked acyl components. 相似文献
2.
Guanylic-acid-specific antibodies were elicited in rabbits) using as immunogen pG linked through 5-phosphate to thyroglobulin. Specificity and affinity of antibodies to nucleotides) nucleosides, DNA, and RNA were studied by their binding to radioactive ligands and competition experiments . Guanylic-acid-specific antibodies do not bind to deoxyguanylic acid and have an average association constant of 107 M–1 at 4°C Binding of the antibodies to3H-RNA is G-specifiC. The antibodies do not bind to32P-ssDNA or32P-dsDNA. The pG-specific antibodies could be separated into different fractions by affinity chromatography. These fractions) though specific to pG) differ in their cross-reactivities to nucleosides and nucleotides.Abbreviations used G
guanosine
- pG
guanosine 5-phosphate (similarly for other nucleotides)
- dpG
deoxyriboguanosine 5-phosphate
- ssDNA
single-stranded DNA
- dsDNA
double-stranded DNA
- Tg
thyroglobulin
- BSA
bovine serum albumin
- RSA
rabbit serum albumin
- EDC
1-ethyl-1-3 (3-dimethylisopropyl) carbodiimide
- Ac-Lys-NHMe
N--acetyl L-lysine N-methylamide
- Ac-Lys-(pG)-NHMe
pG coupled through the phosphate to the -amino group of Ac-Lys-NHMe
- AH-Sepharose-pG
aminohexyl-Sepharose-pG
- TBS
Tris-buffered saline
- SLE
systemic lupus erythematosus 相似文献
3.
Aplysia gonad lectin (AGL), which has been shown to stimulate mitogenesis in human peripheral lymphocytes, to suppress tumor cells, and to induce neurite outgrowth and improve cell viability in cultured Aplysia neurons, exhibits a peculiar galacturonic acid/galactose specificity. The carbohydrate binding site of this lectin was characterized by enzyme-linked lectino-sorbent assay and by inhibition of AGL-glycan interactions. Examination of the lectin binding with 34 glycans revealed that it reacted strongly with the following glycoforms: most human blood group precursor (equivalent) glycoproteins (gps), two Galalpha1-->4Gal-containing gps, and two d-galacturonic acid (GalUA)-containing polysaccharides (pectins from apple and citrus fruits), but poorly with most human blood group A and H active and sialylated gps. Among the GalUA and mammalian saccharides tested for inhibition of AGL-glycan binding, GalUA mono- to trisaccharides were the most potent ones. They were 8.5 x 10(4) times more active than Gal and about 1.5 x 10(3) more active than the human blood group P(k) active disaccharide (E, Galalpha1-->4Gal). This disaccharide was 6, 28, and 120 times more efficient than Galbeta1-->3GlcNAc(I), Galbeta1-->3GalNAc(T), and Galbeta1--> 4GlcNAc (II), respectively, and 35 and 80 times more active than melibiose (Galalpha1-->6Glc) and human blood group B active disaccharide (Galalpha1-->3Gal), respectively, showing that the decreasing order of the lectin affinity toward alpha-anomers of Gal is alpha1-->4 > alpha1-->6 > alpha1-->3. From the data provided, the carbohydrate specificity of AGL can be defined as GalUAalpha1-->4 trisaccharides to mono GalUA > branched or cluster forms of E, I, and II monomeric E, I, and II, whereas GalNAc is inactive. 相似文献
4.
Klebsiella Type 47 capsular polysaccharide has side chains attached to the main chain viaD-glucuronic acid residues. The side chains have been removed to yield an essentially linear polysaccharide by the following sequence of reactions: (1) substitution of hydroxyl and car?yl groups with methyl vinyl ether; (2) β-elimination by treatment with base; (3) removal of modified uronic acid residues and protecting groups by mild acid hydrolysis. The possibility of modifying other uronic acid-containing polysaccharides by this method is discussed. 相似文献
5.
6.
7.
An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues 总被引:3,自引:0,他引:3
Kamal-Eldin A Peerlkamp N Johnsson P Andersson R Andersson RE Lundgren LN Aman P 《Phytochemistry》2001,58(4):587-590
A straight-chain oligomeric structure composed of five secoisolariciresinoldiglucoside (SDG) residues interconnected by four 3-hydroxy-3-methyl glutaric acid (HMGA) residues (molecular weight ca. 4000 Da) was assigned to the main lignan of flaxseed on the basis of nuclear magnetic resonance spectroscopy (NMR). 相似文献
8.
9.
Stefana Petrescu Stefan A. Hulea Rodica Stan Dorina Avram Victoria Herlea 《Biotechnology letters》1992,14(1):1-6
Summary The bioconversion of D-galacturonic acid to L-ascorbic acid was demonstrated in a new yeast strain isolated from the Japanese Crystal. Both intact cells and a crude mitochondrial extract yielded L-ascorbic acid when D-galacturonic acid was present. 相似文献
10.
Cláudia NunesLisete Silva Ana P. FernandesRaquel P.F. Guiné M. Rosário M. DominguesManuel A. Coimbra 《Carbohydrate polymers》2012,87(1):620-626
The study carried out in this work concerns the structural characterization of pectic polysaccharides from plum (Prunus domestica L.) and pear (Pyrus communis L.) cell walls and commercial pectic polysaccharides, obtained from Citrus. The α-(1 → 4)-d-galacturonic acid backbone was submitted to a selective hydrolysis with endo-polygalacturonase (EPG) and the fractions with low molecular weight (<1 kDa) obtained by size-exclusion chromatography were analysed by mass spectrometry using electrospray ionisation (ESI-MS). The ESI-MS spectra obtained revealed the presence of several [M+Na]+ ions of pectic oligosaccharides identified as belonging to different series, including oligosaccharides constituted only by galacturonic acid residues (GalAn, n = 1-5) and galacturonic acid residues substituted by pentose residues (GalA3Pentn, n = 1-2). Surprisingly, it was also observed the occurrence of galacturonic acid residues substituted by hexose residues (GalAnHexm, n = 2-4, m = 1-2). The fragmentation of the observed [M+Na]+ ions, obtained under ESI-MS/MS and MSn allowed to confirm the proposed structures constituent of these pectic oligosaccharides. Furthermore, the ESI-MSn spectra of the ions that could be identified as GalAnHexm (n = 2-4, m = 1-2) confirmed the presence of Hex or Hex2 residues linked to a GalA residue. Methylation analysis showed the presence, in all EPG treated samples, of terminally linked arabinose, terminally and 4-linked xylose, and terminally and 4-linked glucose. The occurrence of GalA substituted by Glc, and Glc-β-(1 → 4)-Glc are structural features that, as far as we know, have never been reported to occur in pectic polysaccharides. 相似文献
11.
H Maruta J Holden A Sizeland G D'Abaco 《The Journal of biological chemistry》1991,266(18):11661-11668
The oncogenic transformation of a normal fibroblast by mutated Ras genes can be reversed by overexpression of a Ras-related gene called Rap1A (or Krev1). Both Ras and Rap1A proteins are G proteins and appear to serve as signal transducers only in the GTP-bound form. Therefore, GAP1 and GAP3, which stimulate the intrinsic GTPase activities of normal Ras and Rap1A proteins, respectively, serve as attenuators of their signal transducing activities. In this paper, we describe the enzymatic properties of several mutated Rap1A and chimeric Ras/Rap1A (or -1B) proteins which lead to the following conclusions: (i) the GAP3-dependent activation of both Rap1A and -1B GTPases requires Gly12, but neither Thr61 nor Gln63; (ii) residues 64 to 70 of the Rap1 GTPases are sufficient to determine their specificities for GAP3; and (iii) residues 61 to 65 of the Ras GTPases are sufficient for determining their specificities for GAP1. Thus, the domains of the Ras or Rap1 proteins that determine whether their signals are attenuated by GAP1 or GAP3 are distinct from the N-terminal domain (residues 21 to 54) that determines whether their signals are oncogenic or antioncogenic. The Arg12 mutant of chimeric HaRas(1-54)/Rap1A(55-184) protein has been previously reported to be oncogenic (Zhang, K., Noda, M., Vass, W. C., Papageorge, A.G., and Lowy, D.R. (1990) Science 249, 162-165). In this paper, we show that the Val12 mutant of chimeric HaRas(1-54)/Rap1B(55-184) protein is also oncogenic, suggesting that the C-terminal geranylgeranylation of the Rap 1B protein can replace functionally the C-terminal farnesylation of the Ras protein to allow the G protein to be oncogenic. 相似文献
12.
13.
Lipase-catalyzed transesterification of dihydrocaffeic acid with flaxseed oil for the synthesis of phenolic lipids 总被引:1,自引:0,他引:1
Lipase-catalyzed transesterification reaction of dihydrocaffeic acid (DHCA) with flaxseed oil in organic solvent media was investigated. Using equal molar concentration of DHCA and flaxseed oil, only phenolic monoacylglycerols were obtained with a transesterification yield (TY) of 18.9%. A 1:4 DHCA to flaxseed oil ratio resulted in the production of both phenolic mono and diacylglycerols, with TY of 39.6 and 27.8%, respectively. On the other hand, when 1:8 ratio of DHCA to flaxseed oil was used, the TY of phenolic diacylglycerols (46.0%) was higher than that of the phenolic monoacylglycerols (33.3%). The TY of phenolic diacylglycerols increased from 25.1 to 55.8%, when the ratio of the hexane/2-butanone reaction medium was changed from 65:35 to 85:25 (v/v); however, the TY of phenolic monoacylglycerols decreased slightly from 34.0 to 31.8%. The relative proportion of the C(18:3)n-3 was higher in the phenolic mono and diacylglycerols, 64.9 and 59.5%, respectively, as compared to the original flaxseed oil, 53.1%. The radical scavenging ability of phenolic lipids was significant; however, it was about half than that of alpha-tocopherol. 相似文献
14.
Determinant specificities of the groups B and C polysaccharides of Neisseria meningitidis 总被引:12,自引:0,他引:12
A meningococcal group B-specific horse antiserum contains at least two distinct populations of antibodies with specificities for determinants on the group B capsular polysaccharide antigen. These two populations were differentiated on the basis of the ability of only one of them to be absorbed from the antiserum by the structurally related colominic acid. The nature of the colominic acid-specific determinant was elucidated by a radioimmunoassay inhibition technique with the use of a series of linear alpha-(2----8)-linked oligomers of sialic acid as inhibitors. Colominic acid was labeled by prior removal of its N-acetyl groups, followed by their replacement with the use of [3H]acetic anhydride. The conformational nature of the determinant was proposed because of the unusually large size (10 sialic acid residues) of the oligomer required to function as an efficient inhibitor. The structure of the determinant responsible for the second population of group B-specific antibodies has not been determined, but it is obviously based on an as yet undefined conformational or structural feature peculiar to the group B meningococcal polysaccharide. In contrast to the colominic acid-specific group B determinant, the determinant responsible for the group C polysaccharide-specific rabbit antibodies proved to be more conventional. Inhibitory properties of the alpha-(2----9)-linked oligomers maximized with those containing four or five sialic acid residues, which is consistent with the approximate estimated maximal size of an antibody site. 相似文献
15.
R L Cleland 《Biopolymers》1970,9(7):811-824
The root-mean-square end-to-end distance has been calculated for a model allowing free rotation about glycoside bonds for the general case of polysaccharides having a disaccharide repeating unit. Numerical estimates are given for several naturally occurring structures based on an idealized pyranose unit in the C1 chair conformation. Extrapolation procedures which make use of the intrinsic viscosity [η] in good solvents to obtain unperturbed dimensions do not represent, data for hyaluronic acid very well, especially at low molecular weights. However, order-of-magnitude estimates suggest that this polymer behaves similarly to other polysaccharides, and probably has stiffer local structure than typical non-ionic synthetic polymers. A double logarithmic plot of the product of [η] and M?w, the weight-average molecular weight, against the degree of polymerization in the range for M?w of 104 to 2 × 104 permits a straight-line fit of available data for all the glycosaminoglycans, including heparin and the chondroitin sulfates, as well as sodium carboxymethyl cellulose. This result suggests similarity of short-chain hydrodynamic behavior of these polymers. 相似文献
16.
The interaction of D-xylose isomerase purified from two sources with Mn2+ and D-xylose or the competitive inhibitor xylitol has been examined by nuclear magnetic resonance. A greater paramagnetic effect of enzyme-bound Mn2+ on the alpha anomer of D-xylose than on the beta anomer was observed, providing independent evidence for the specificity of D-xylose isomerase for the alpha anomeric form of D-xylose. The exchange rate of alpha-D-xylose into the ternary complex, determined from the normalized paramagnetic contribution to the transverse relaxation rate (1/fT2p) of the carbon 1 proton of alpha-D-xylose, exceeds Vmax for the enzymatic reaction by 3 orders of magnitude. The amount of xylitol necessary to displace alpha-D-xylose from the substrate-enzyme-Mn2+ complex is consistent with the Km value for alpha-D-xylose and the inhibitor constant Ki for xylitol previously determined by the methods of enzyme kinetics. These results suggest that the NMR experiments observe complexes of D-xylose isomerase which are kinetically and thermodynamically competent to participate in catalysis. From the frequency dependence of the paramagnetic contribution to the longitudinal relaxation rate (1/T1p) of the carbon 1 proton of alpha-D-xylose, the correlation time (tauc) which modulates the dipolar interaction between enzyme-bound Mn2+ and alpha-D-xylose has been determined (5.1 x 1o(-10) s). From these observations a range of calculated distances between enzyme-bound Mn2+ and the carbon 1 proton of alpha-D-xylose (9.1 +/- 0.7 A) has been found. The enzyme-bound Mn2+ has comparable effects on the carbon 1, carbon 2, and carbon 5 protons of alpha-D-xylose, suggesting that these protons of the enzyme-bound substrate are equidistant from the bound Mn2+. A similar distance (9.4 +/- 0.7 A) between the enzyme-bound Mn2+ and the terminal methylene protons of xylitol, an analog of the open chain intermediate in the reaction, has been determined. The results of the present substrate relaxation and previous water relaxation studies suggest that two small ligands such as water molecules or a large portion of the protein intervene between the bound metal ion and the bound substrate in the active ternary complex. 相似文献
17.
S K Loewen A M Ng S Y Yao C E Cass S A Baldwin J D Young 《The Journal of biological chemistry》1999,274(35):24475-24484
hCNT1 and hCNT2 mediate concentrative (Na(+)-linked) cellular uptake of nucleosides and nucleoside drugs by human cells and tissues. The two proteins (650 and 658 residues, 71 kDa) are 72% identical in sequence and contain 13 putative transmembrane helices (TMs). When produced in Xenopus oocytes, recombinant hCNT1 is selective for pyrimidine nucleosides (system cit), whereas hCNT2 is selective for purine nucleosides (system cif). Both transport uridine. We have used (i) chimeric constructs between hCNT1 and hCNT2, (ii) sequence comparisons with a newly identified broad specificity concentrative nucleoside transporter (system cib) from Eptatretus stouti, the Pacific hagfish (hfCNT), and (iii) site-directed mutagenesis of hCNT1 to identify two sets of adjacent residues in TMs 7 and 8 of hCNT1 (Ser(319)/Gln(320) and Ser(353)/Leu(354)) that, when converted to the corresponding residues in hCNT2 (Gly(313)/Met(314) and Thr(347)/Val(348)), changed the specificity of the transporter from cit to cif. Mutation of Ser(319) in TM 7 of hCNT1 to Gly enabled transport of purine nucleosides, whereas concurrent mutation of Gln(320) to Met (which had no effect on its own) augmented this transport. The additional mutation of Ser(353) to Thr in TM 8 converted hCNT1/S319G/Q320M, from cib to cif, but with relatively low adenosine transport activity. Additional mutation of Leu(354) to Val (which had no effect on its own) increased the adenosine transport capability of hCNT1/S319G/Q320M/S353T, producing a full cif-type transporter phenotype. On its own, the S353T mutation converted hCNT1 into a transporter with novel uridine-selective transport properties. Helix modeling of hCNT1 placed Ser(319) (TM 7) and Ser(353) (TM 8) within the putative substrate translocation channel, whereas Gln(320) (TM 7) and Leu(354) (TM 8) may exert their effects through altered helix packing. 相似文献
18.
While searching for oligosaccharides containing rhamnose residues in the endopolygalacturonase (EPG) digest of saponified citrus pectin, we found several oligomers containing, in addition to galacturonic acid, a sugar previously unreported in pectin. The 1- and 2-D 1H NMR spectra of the oligosaccharides were consistent with the sugar being a uronic acid with its 2- and 3-hydroxyls being axial and 4-hydroxyl being equatorial. MALDI-TOF mass spectrometry indicated that the oligomers consisted solely of uronic acids. Reduction of the uronic acids in the oligosaccharides converted them to galactose and altrose. The altrose was found to be the L enantiomer by comparison of its trimethylsilyl (-)-2-butyl glycosides to those of authentic D-altrose and a racemic mixture. The sugar was not found in oligosaccharides prepared from EPG digestion of citrus pectin deesterified with pectin methylesterase rather than saponification. Thus, it appears that during saponification, a small proportion of the methylesterified galacturonic acid residues in pectins is epimerized at C-5 leading to formation of L-altruronic acid residues. 相似文献
19.
20.
Synytsya A Urbanová M Setnicka V Tkadlecová M Havlícek J Raich I Matejka P Synytsya A Copiková J Volka K 《Carbohydrate research》2004,339(14):2391-2405
Solid complexes of D-galacturonic acid (GalA) with cobalt(II), copper(II), nickel(II) and oxovanadium(IV) (1-4) were prepared and characterised. The metal-to-ligand molar ratio was 1:2 for complexes 1-3 and 1:1 for complex 4. The alpha- and beta-anomers of GalA were detected in all the complexes in solid state and in solutions. An addition of small amounts of the paramagnetic complexes to the D2O solution of pure ligand led to NMR line broadening of some 1H and 13C nuclei. This broadening was sensitive to the anomeric state of GalA in the case of complexes 1 and 4. NMR and vibrational spectroscopic data indicate the formation of carboxylate complexes of all the cations, while noncarboxylic oxygens are also involved into the metal bonding in some cases. VCD spectra of complexes 1-4 in D2O and Me2SO-d6 solutions confirm that GalA carboxylic group may participate in the formation of optically active species around the metal cation. Possible ways of GalA coordination by metal cations of this study were proposed and discussed. 相似文献