首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the gene for the iron transport protein transferrin was found to be altered in preneoplastic and neoplastic lesions induced in the rat liver by N-nitrosomorpholine. The total RNA of ten hepatocellular carcinomas (HCC) was investigated by Northern blot analysis using a cDNA-probe comprising 150 bp of the 3′ region and compared with the total hepatic RNA in untreated rats. Seven hepatocellular carcinomas showed slight or pronounced reduction in transferrin expression. In situ hybridization of two additional hepatocellular carcinomas revealed marked reduction in the mRNA level for the transferrin gene compared with the surrounding tissue. In contrast, the majority of early preneoplastic lesions storing excess glycogen and tigroid cell foci expressed increased levels of transferrin mRNA. The loss of glycogen in mixed cell foci, which represent a later stage of hepatocarcinogenesis, was usually accompanied by a decrease in transferrin mRNA suggesting a close relationship between this change in gene expression and cellular dedifferentiation emerging during hepatocarcinogenesis.  相似文献   

2.
Preneoplastic and neoplastic hepatic lesions were induced in male Sprague-Dawley rats by oral administration of N-nitrosomorpholine (NNM) for 7 weeks at a concentration of 200 mg/l of drinking-water (stop model). Using a laser dissection technique and biochemical microanalysis, the activity of the lysosomal enzyme alpha-glucosidase was measured in glycogen storage foci emerging early, and in mixed or basophilic cell populations (foci and carcinomas) appearing later during hepatocarcinogenesis. In the liver tissue of normal appearance in both untreated controls and NNM-treated animals a slight gradient of alpha-glucosidase activity was observed leading from relatively high activities in zone 1 to lower activities in zone 3 of the liver lobule. In preneoplastic glycogen storage foci a considerable relative reduction in alpha-glucosidase activity was detected, suggesting that a decrease in the hydrolytic glycogen degradation contributes to the disturbance in phosphorylytic glycogen breakdown observed earlier in the majority of the glycogenotic foci. In contrast with glycogen storage foci, mixed and basophilic cell foci and particularly hepatocellular carcinomas showed a marked increase in alpha-glucosidase activity compared with that of normal liver tissue. The gradual enhancement in enzyme activity appeared to be closely related to the reduction in glycogen initially stored in excess during the later stages of hepatocarcinogenesis. The results support the concept that a fundamental shift in carbohydrate metabolism is characteristic of neoplastic transformation of hepatocytes.  相似文献   

3.
Glycogen phosphorylase (PHO) was demonstrated immunocytochemically and enzyme histochemically in cryostat sections of liver from rats treated for 7 weeks with N-nitrosomorpholine (120 mg/l and 200 mg/l drinking water) and from untreated controls. The activity and distribution of PHO protein were studied in normal liver and correlated with morphologically defined stages of hepatic tumour development. In normal liver the amount of enzyme protein, as visualized by the immunoperoxidase method using antibodies against phosphorylase, showed some heterogeneity within the liver lobule. The intralobular and intracellular distribution of PHO protein was the same as that of glycogen, namely coarse and granular in periportal hepatocytes and very fine in perivenular cells. In glycogen storage foci the amount of PHO protein was increased. In contrast, PHO activity was generally decreased. In other preneoplastic and neoplastic lesions such as mixed cell foci, neoplastic nodules and hepatocellular carcinomas, PHO protein was increased in all glycogen-loaded cells while PHO activity was reduced. In all glycogen-poor and basophilic cells, both PHO protein and PHO activity were decreased or absent. It was concluded that the decrease in PHO activity in glycogen storage foci was not the direct consequence of genetic changes leading to a loss in enzyme protein but was due to a defect in the cascade of phosphorylation processes resulting in active PHO. Alteration in gene expression leading to a loss of PHO protein was a late event in the process of hepatocarcinogenesis.  相似文献   

4.
Due to the development of the imaging techniques and liver surgery, pathologists are encountered more frequently with preneoplastic liver lesions. Well-defined stages of human hepatocarcinogenesis have been distinguished recently. Dysplastic foci represent the earliest stage of this process. Small-cell dysplastic foci are tumor precursors, but the large-cell form of this lesion does not progress further. The next stage is the dysplastic nodule, this larger lesion can be recognized by imaging techniques and gross examination of the specimen. Low- and high-risk forms are distinguished based on the level of cytological and structural atypia. The small hepatocellular carcinomas have a diameter of less than 2 cm by definition. The small HCC of indistinctly nodular type is equivalent of in situ carcinomas in other organs and designated sometimes as early HCC. The small HCC of the distinctly nodular type can be interpreted as advanced cancer despite its small size. The distinction between these lesions can be facilitated by ancillary techniques. The so-called capillarization of the liver sinusoids during the progression is characterized by the increased expression of endothelial markers as CD31 and CD34. Immunostaining for CD44, beta-catenin and p53 has prognostic value. Molecular biological techniques reveal gradual epigenetic and DNA changes during the process of hepatocarcinogenesis. Global gene expression profiling of hepatocellular carcinomas may result in a new classification of this tumor and can reveal new potential therapeutic targets.  相似文献   

5.
There is some evidence that rodent hepatocarcinogenesis is accompanied by changes in the adrenergic responsiveness of liver cells to catecholamines. In this study, immunohistochemical expression of beta1-adrenergic receptors (beta1-ARs) has been examined in spontaneous and chemically induced preneoplastic and neoplastic liver lesions of female and male Fischer 344 rats. An antibody specific for beta1-AR subtype was used. The study was carried out on archival formalin-fixed and paraffin-embedded livers from rats used in a previous study of hepatocarcinogenesis. One control group given distilled water by gavage, and two experimental groups, one initiated with a single dose of diethylnitrosamine (DEN) and one initiated with DEN and continuously treated with phenobarbital (PB) were examined. Rats were sacrificed after 2, 4, 8 and 21 months of experimentation. All types of liver putative preneoplastic lesions examined (basophilic, glycogen-retaining, or mixed cell foci) show a lower density of beta1-ARs than the surrounding normal liver parenchyma, either in control and in DEN-treated or DEN+PB-treated rats. No immunostaining is detectable in several altered cell foci. Hepatocellular adenomas and hepatocellular carcinomas also show a very low density of beta1-ARs, extensive areas completely devoid of beta1-ARs being mingled with areas showing a weak immunostaining.  相似文献   

6.
7.
In a stop-experiment using the hepatocarcinogen N-nitrosomorpholine, as well as glycogenotic and related lesions, hepatocellular foci with a different histochemical pattern were identified. The outstanding features of these hepatic foci, which may progress to hepatocellular adenoma, were increased activities of mitochondrial glycerol-3-phosphate dehydrogenase (mG3PD), glycogen synthase, pyruvate kinase and glucose-6-phosphatase detected by enzyme histochemistry. Since no decrease in activity of any of the enzymes examined were seen in these foci, compared with normal liver, the term enzymatically hyperactive focus (EHF) is proposed for this type of lesion. Only at the stage of overtly nodular growth did these lesions exhibit some of the characteristic changes seen in nodules developing from glycogenotic foci, namely elevated activities of glucose-6-phosphate dehydrogenase, gamma-glutamyl transferase and glutathione-S-transferase P as well as decreased activities of adenosine-triphosphatase, glucose-6-phosphatase and adenylate cyclase. Some of these enzymes have been used widely in morphometric studies as markers for preneoplastic and neoplastic lesions. The inability to detect early EHF may lead to an underestimation of preneoplastic liver lesions in quantitative studies. Although there are apparent differences in the histochemical patterns of glycogen storing foci and early EHF, these differences tend to disappear during progression to overtly neoplastic lesions. In studies comparing the phenotypic alterations in different types of preneoplastic hepatic lesions, the recognition of EHF may contribute to the distinction of obligatory from facultative phenomena during transformation.  相似文献   

8.
Biochemical and molecular biological approaches in situ have provided compelling evidence for early bioenergetic changes in hepatocarcinogenesis. Hepatocellular neoplasms regularly develop from preneoplastic foci of altered hepatocytes, irrespective of whether they are caused by chemicals, radiation, viruses, or transgenic oncogenes. Two striking early metabolic aberrations were discovered: (1) a focal excessive storage of glycogen (glycogenosis) leading via various intermediate stages to neoplasms, the malignant phenotype of which is poor in glycogen but rich in ribosomes (basophilic), and (2) an accumulation of mitochondria in so-called oncocytes and amphophilic cells, giving rise to well-differentiated neoplasms. The metabolic pattern of human and experimentally induced focal hepatic glycogenosis mimics the phenotype of hepatocytes exposed to insulin. The conversion of the highly differentiated glycogenotic hepatocytes to the poorly differentiated cancer cells is usually associated with a reduction in gluconeogenesis, an activation of the pentose phosphate pathway and glycolysis, and an ever increasing cell proliferation. The metabolic pattern of preneoplastic amphophilic cell populations has only been studied to a limited extent. The few available data suggest that thyromimetic effects of peroxisomal proliferators and hepadnaviral infection may be responsible for the emergence of the amphophilic cell lineage of hepatocarcinogenesis. The actions of both insulin and thyroid hormone are mediated by intracellular signal transduction. It is, thus, conceivable that the early changes in energy metabolism during hepatocarcinogenesis are the consequence of alterations in the complex network of signal transduction pathways, which may be caused by genetic as well as epigenetic primary lesions, and elicit adaptive metabolic changes eventually resulting in the malignant neoplastic phenotype.  相似文献   

9.
Indoleamine 2,3-dioxygenase (IDO), a tryptophan-catabolizing intracellular enzyme of the L-kynurenine pathway, causes preneoplastic cells and tumor cells to escape the immune system by inducing immune tolerance; this mechanism might be associated with the development and progression of human malignancies. In the present study, we investigated the role of IDO in diethylnitrosamine (DEN)-induced hepatocarcinogenesis by using IDO-knockout (KO) mice. To induce hepatocellular carcinoma (HCC), hepatic adenoma, and preneoplastic hepatocellular lesions termed foci of cellular alteration (FCA), male IDO-wild-type (WT) and IDO-KO mice with a C57BL/6J background received a single intraperitoneal injection of DEN at 2 weeks of age. The mice were sacrificed to evaluate the development of FCA and hepatocellular neoplasms. HCC overexpressed IDO and L-kynurenine compared to surrounding normal tissue in the DEN-treated IDO-WT mice. The number and cell proliferative activity of FCAs, and the incidence and multiplicity of HCC were significantly greater in the IDO-WT than in the IDO-KO mice. The expression levels of the IDO protein, of L-kynurenine, and of IFN-γ, COX-2, TNF-α, and Foxp3 mRNA were also significantly increased in the DEN-induced hepatic tumors that developed in the IDO-WT mice. The mRNA expression levels of CD8, perforin and granzyme B were markedly increased in hepatic tumors developed in IDO-KO mice. Moreover, Foxp3-positive inflammatory cells had infiltrated into the livers of DEN-treated IDO-WT mice, whereas fewer cells had infiltrated into the livers of IDO-KO mice. Induction of IDO and elevation of L-kynurenine might play a critical role in both the early and late phase of liver carcinogenesis. Our findings suggest that inhibition of IDO might offer a promising strategy for the prevention of liver cancer.  相似文献   

10.
Summary The relationship between immune function and chemically induced hepatocarcinogenesis was studied employing an in vivo murine model. Neonatal B6C3F1 mice were given a single carcinogenic dose of diethylnitrosamine (DEN) and the time-response kinetics for the early (foci of alteration) and late (adenomas/carcinomas) phases of hepatocellular carcinogenesis were compared to changes in hematopoiesis and immune functions associated with immune surveillance and natural resistance. Increases in hematopoiesis occurred just prior to or concurrent with the appearance of hepatocellular carcinomas, while increased macrophage and natural killer cell cytotoxicity and suppression of cell-mediated immunity occurred following tumor appearance and progressed with increasing tumor burden. Neither immunological nor hematopoietic changes were associated with early phases of hepatocarcinogenesis, as monitored by the appearance of altered hepatocellular foci. Although changes in hematopoiesis may represent an early indicator for hepatocarcinogenesis in the mouse tumor model, the data suggest that altered immune surveillance and natural resistance are not factors in the development of chemically induced hepatocellular tumors, and the changes in immune function are probably secondary to tumor development.  相似文献   

11.
Expression of inducible nitric oxide synthase (iNOS) and effects of iNOS gene ablation on the hepatocarcinogenesis associated with fibrosis caused by a choline-deficient, L-amino acid-defined (CDAA) diet, were examined in male F344 rats and C57BL/6J wild-type and iNOS-/- mice. Western blot, RT-PCR and immunohistochemical analyses revealed increased expression of iNOS protein and mRNA in the livers of rats and wild-type mice fed a CDAA diet for 12-80 weeks, associated with elevated serum NO(x) and liver nitrotyrosine levels. iNOS-/- mice demonstrated greater liver injury and fibrosis in the early stage than their wild-type counterparts, but this did not significantly affect the incidence and multiplicity of altered foci, adenomas and hepatocellular carcinomas in spite of immunohistochemical iNOS expression in these lesions. Results suggested no major determinant roles of the expressed iNOS in the development of liver tumors caused by the CDAA diet.  相似文献   

12.
13.
Lung resistance-related protein (LRP) plays an important role in chemoresistance of tumor cells probably by altering nuclear-cytoplasmic transport processes. We analyzed the association between LRP expression and hepatocarcinogenesis in humans and rats by RT-PCR, immunoblotting, and immunohistochemistry. LRP was found in hepatocytes and bile epithelia of normal human and rat liver showing distinct interindividual variations. In human tissues, the LRP expression levels of dysplastic liver nodules, hepatocellular adenomas, and carcinomas were highly variable, including decreased but also distinctly increased staining intensities. Mean expression levels, however, were comparable to the surrounding tissue. Considerable levels of LRP mRNA and protein were also found in human hepatoma cell lines. To study LRP expression from the beginning of hepatocarcinogenesis onward, rats were subjected to a tumor initiation/promotion protocol leading to preneoplastic hepatocytes present as single cells or multicellular clones, followed by adenoma and carcinoma. All of the (pre)neoplastic rat liver lesions expressed, comparable to the surrounding tissue, considerable amounts of LRP. We conclude that LRP might be one mechanism involved in the intrinsically high but variable chemoresistance of normal and (pre)neoplastic hepatocytes.  相似文献   

14.
The rat placental glutathione S-transferase (GST-P), an isozyme of glutathione S-transferase, is not expressed in normal liver but is highly induced at an early stage of chemical hepatocarcinogenesis and in hepatomas. Recently, we reported that the NF-E2 p45-related factor 2 (Nrf2)/MafK heterodimer binds to GST-P enhancer 1 (GPE1), a strong enhancer of the GST-P gene, and activates this gene in preneoplastic lesions and hepatomas. In addition to the positive regulation during hepatocarcinogenesis, negative regulatory mechanisms might work to repress GST-P in normal liver, but this remains to be clarified. In this work, we identify the CCAAT enhancer-binding protein alpha (C/EBPalpha) as a negative regulator that binds to GPE1 and suppresses GST-P expression in normal liver. C/EBPalpha binds to part of the GPE1 sequence, and the binding of Nrf2/MafK and C/EBPalpha to GPE1 is mutually exclusive. In a transient-transfection analysis, C/EBPalpha activated GPE1 in F9 embryonal carcinoma cells but strongly inhibited GPE1 activity in hepatoma cells. The expression of C/EBPalpha was specifically suppressed in GST-P-positive preneoplastic foci in the livers of carcinogentreated rats. A chromatin immunoprecipitation analysis showed that C/EBPalpha bound to GPE1 in the normal liver in vivo but did not bind in preneoplastic hepatocytes. Introduction of the C/EBPalpha gene fused with the estrogen receptor ligand-binding domain into hepatoma cells, and subsequent activation by beta-estradiol led to the suppression of endogenous GST-P expression. These results indicate that C/EBPalpha is a negative regulator of GST-P gene expression in normal liver.  相似文献   

15.
Chronic griseofulvin (GF) feeding induces preneoplastic foci followed by hepatocellular carcinoma in the mouse liver. Our previous study suggested that GF-induced hepatocellular proliferation had a different mechanism from that of peroxisome proliferator (PP)–induced direct hyperplasia. The GF-induced hepatocellular proliferation was mediated through activation of immediate early genes such as Fos, Jun, Myc, and NFκB. In contrast, PP-induced direct hyperplasia does not involve activation of any of these immediate early genes. It has been shown that nuclear hormone receptors including peroxisome proliferator activated receptors (PPARs) and retinoid x receptors (RXRs) play important roles in mediating the pleiotropic effects of PPs. To examine the possible roles of PPARs and RXRs during non-PP-induced hepatocellular proliferation and the interaction between PP and non-PP-induced proliferation, we have studied the expression of the PPAR and RXR genes in the GF model using northern blot hybridizations and gel retardation assays. The data showed that the expression of PPARα and RXRα genes was down-regulated in the livers containing preneoplastic nodules and in the liver tumors induced by GF. The mRNA down-regulation was accompanied by a decrease in the amount of nuclear protein–bound to peroxisome proliferator and retinoic acid responsive elements. Down-regulation was also associated with the suppressed expression of the PPARα/RXRα target genes (i.e., acyl-Co oxidase and cytochrome P450 4A1) and the catalase gene. The RXRγ gene was also down-regulated, but the RARα, β, and γ and PPARβ and γ genes were up-regulated. These results indicated that the hepatocarcinogenesis induced by GF is accompanied by suppression of the PPARα/RXRα-mediated direct hyperplasia pathway. The differential expression of these nuclear hormone receptors reveals a new aspect for understanding the individual roles and intercommunication of PPAR, RXR, and RAR isoforms in the liver. J. Cell. Biochem. 69:189–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Kuo WH  Chiang WL  Yang SF  Yeh KT  Yeh CM  Hsieh YS  Chu SC 《Life sciences》2003,73(17):2211-2223
Cytosolic carbonic anhydrases (CAs), including CAI, CAII and CAIII are present in normal hepatocytes. This study was aimed to investigate the expression status of CAs in hepatocellular carcinomas (HCC) and cholangiocellular carcinoma (CCC) and the role of tumor progression. The activity, protein expression pattern and messenger RNA of cytosolic CA were analyzed by CA activity analysis, immunoblot and RT-PCR in 60 human hepatocellular carcinomas and 10 human cholangiocellular carcinoma surgical specimens. The in situ distribution of CAI, CAII and CAIII in hepatocellular carcinomas tissues were analyzed by immunohistochemistry. The result showed that in each of 60 human hepatocellular carcinomas and 10 cholangiocellular carcinoma, CA activity and protein expression in tumor area was significantly lower than that of paired adjacent normal tissues (P < 0.01), and mRNA expressions in tumor areas were also reduced (P < 0.001). Furthermore, the immunohistochemical studies have further confirmed this reduction of CAI, CAII and CAIII protein expression in tumor areas. There was a statistically significant reduction in the expression of cytosolic CAII in poorly differentiated cancer (P < 0.001). Furthermore, the reduction of CAI, CAII and CAIII in HCC tumor areas was also revealed in this study and this reduction might promote tumor cell motility and contribute to tumor growth and metastasis.  相似文献   

17.
Five simian virus 40 (SV40)-hepatocyte cell lines were examined for tumorigenicity and the effect of in vitro passage on the expression of four liver-specific genes (albumin, transferrin, alpha 1-antitrypsin, and phosphoenolpyruvate carboxykinase), two oncogenes (c-Ha-ras and c-raf), and two genes associated with hepatocarcinogenesis (alpha-fetoprotein and placental-type glutathione-S-transferase). At low passage (12 to 22), all five cell lines expressed the four liver-specific genes at levels similar to those in the liver and were not tumorigenic or were weakly tumorigenic. At high passage (33 to 61), the cell lines formed carcinomas, and four out of five cell lines produced primary tumors that metastasized. At least two cell lines produced well-differentiated hepatocellular carcinomas that expressed liver-specific RNAs. Levels of expression of liver-specific genes changed with time in culture. Some of the changes in liver-specific gene expression in the tumor tissue (such as for the phosphoenolpyruvate carboxykinase gene) paralleled those that occurred with in vitro passage, while other changes (such as for the albumin gene) did not parallel those that occurred with in vitro passage. Correlations between enhanced expression of c-Ha-ras and tumorigenic potential and between the process of SV40 immortalization and induced expression of c-raf and glutathione-S-transferase-P were observed. Induction of alpha-fetoprotein was detected with in vitro and in vivo passage only in the CWSV14 cell line and was paralleled by diminished albumin expression. In conclusion, we developed a model system with five SV40-hepatocyte cell lines, tumors induced by them, and tumor cell lines to examine changes in gene expression that accompany the progression from a normal cell to a hepatocellular carcinoma. Because the SV40-hepatocyte cell lines and tumor cell lines remain highly differentiated and vary in the magnitude of expression of specific genes, they can be used to study the molecular mechanisms regulating gene expression, in particular those regulating specific genes associated with differentiation.  相似文献   

18.
Role of cell replication on aflatoxin B1 (AFB1) induced hepatocarcinogenesis was investigated in neonatal rats showing persistence of cell replication in the liver for 21 days of post natal life. Adult (8-10 weeks old) rats displaying no hepatocytic proliferation served as controls. Three doses of AFB1 were administered to both the groups at intervals of 48 hr with the doses starting on 10th day of age in the neonatal group. Appearance of phenotypically altered preneoplastic hepatocytes was quantitated in both the groups. A significantly higher incidence of preneoplastic foci was recorded in neonatal rats as compared to adult animals. The results suggest that presence of cell replication in neonatal rats at the time of AFB1 administration enhances the process of hepatocarcinogenesis.  相似文献   

19.
In various species, the manifestation of hepatocellular neoplasms is regularly preceded by preneoplastic foci of altered hepatocytes (FAH), the cellular phenotype of which is strikingly similar in experimental and human hepatocarcinogenesis, irrespective of the etiology of this process. The different types of FAH have been related to three main preneoplastic hepatocellular lineages: 1) the glycogenotic-basophilic cell lineage, 2) its xenomorphic-tigroid cell variant, and 3) the amphophilic-basophilic cell lineage. The predominant glycogenotic-basophilic and tigroid cell lineages developed especially after exposure to DNA-reactive chemicals, radiation, viruses, transgenic oncogenes and local hyperinsulinism. The early phenotypes of these lineages indicate an initiation by insulin or insulinomimetic effects of the oncogenic agents, triggering the raf-Map kinase signal transduction pathway. In contrast, the amphophilic-basophilic cell lineage has mainly been observed after exposure of rodents to not directly DNA-reactive peroxisome proliferators but also hepadnaviridae, its biochemical pattern mimiking an effect of thyroid hormone.  相似文献   

20.
We evaluated the effects of brucine on N-nitrosodiethylamine (DENA)-induced hepatocarcinogenesis in rats. Initiation of hepatocarcinogenesis was done by intraperitoneal injection of diethylnitrosamine (DENA) followed by promotion with phenobarbital. The rats were exposed to dietary brucine for 4 weeks prior to initiation, and the treatment was continued for 22 consecutive weeks. Brucine decreased the incidence, total number, multiplicity, size and volume of preneoplastic hepatic nodules in a dose-dependent manner. Administration of DENA induced hepatocellular carcinoma (HCC), as evidenced by changes in histopathological architecture, increased activity of cytochrome P450, decreased activity of glutathione Stransferase (GST) as well as decreased antioxidant status, enhanced lipid peroxidation, increased liver marker enzymes. Western blot analysis showed decreased expression of cyclin D1 and Bcl-2 with activation of caspase-3 and increased expression of Bax. Immunohistochemical demonstrated the decreased expression of the PCNA and VEGF. These results indicate that brucine prevents lipid peroxidation and hepatic cell damage and also protects the antioxidant system in DENA-induced hepatocarcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号