首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.  相似文献   

2.
Secondary forests constitute a substantial proportion of tropical forestlands. These forests occur on both public and private lands and different underlying environmental variables and management regimes may affect post‐abandonment successional processes and resultant forest structure and biodiversity. We examined whether differences in ownership led to differences in forest structure, tree diversity, and tree species composition across a gradient of soil fertility and forest age. We collected soil samples and surveyed all trees in 82 public and 66 private 0.1‐ha forest plots arrayed across forest age and soil gradients in Guanacaste, Costa Rica. We found that soil fertility appeared to drive the spatial structure of public vs. private ownership; public conservation lands appeared to be non‐randomly located on areas of lower soil fertility. On private lands, areas of crops/pasture appeared to be non‐randomly located on higher soil fertility areas while forests occupied areas of lower soil fertility. We found that forest structure and tree species diversity did not differ significantly between public and private ownership. However, public and private forests differed in tree species composition: 11 percent were more prevalent in public forest and 7 percent were more prevalent in private forest. Swietenia macrophylla, Cedrela odorata, and Astronium graveolens were more prevalent in public forests likely because public forests provide stronger protection for these highly prized timber species. Guazuma ulmifolia was the most abundant tree in private forests likely because this species is widely consumed and dispersed by cattle. Furthermore, some compositional differences appear to result from soil fertility differences due to non‐random placement of public and private land holdings with respect to soil fertility. Land ownership creates a distinctive species composition signature that is likely the result of differences in soil fertility and management between the ownership types. Both biophysical and social variables should be considered to advance understanding of tropical secondary forest structure and biodiversity.  相似文献   

3.
秦岭山地典型次生林木本植物幼苗更新特征   总被引:6,自引:0,他引:6  
采用样方法调查了秦岭山地5种典型次生林--油松林、锐齿栎林、红桦林、云杉林和华山松林幼苗的更新特征.结果表明: 不同次生林木本植物幼苗物种分化明显,除锐齿栎林和华山松林外,其余次生林幼苗物种相似性系数均较低;油松林和锐齿栎林木本植物幼苗数量、物种丰富度指数、Simpson优势度指数及均匀度指数均较高,红桦林均最低;云杉林和华山松林幼苗数量及物种多样性指数基本一致.不同次生林幼苗和幼树所占比例存在明显差异,除红桦林幼树数量的比例较大外,其余林分幼苗的比例较大,为云杉林>油松林>锐齿栎林>华山松林.不同林分幼苗萌生比例差异明显,为华山松林>云杉林>红桦林>锐齿栎林>油松林.锐齿栎林和油松林乔木幼苗比例最高,分别占木本幼苗总种数的68%和51.4%,群落处于演替中期,持续更新能力较强;云杉林、华山松林乔木幼苗比例分别为40%和15%,处于演替后期,更新能力较差;而红桦林中幼苗很难发育成幼树,持续更新能力欠缺.  相似文献   

4.
Fragmentation of tropical forest alters community composition as a result of changes in forest shape. This paper uses 22 hypotheses to test the effect of fragment shape on tree species composition in Ghana, West Africa, within biological categories of regeneration guild, rarity, phenology and dispersal. For both regenerating and mature trees, relationships between species composition and the shape of forest fragments were complex; almost half were significant but many failed to support the established hypotheses. Irregular shaped fragments had high proportions of regenerating, light‐demanding pioneers and mature, animal‐dispersed species. Species common to Ghana formed the foundation of communities in fragments of all shapes. Investigation at the landscape level indicated broad patterns of species change. Rigorous hypothesis testing is needed, following extensive demographic work on the ground, before population dynamics within tropical forest fragments can be comprehended fully and applied to conservation management.  相似文献   

5.
6.
Secondary forests are increasingly important components of human-modified landscapes in the tropics. Successional pathways, however, can vary enormously across and within landscapes, with divergent regrowth rates, vegetation structure and species composition. While climatic and edaphic conditions drive variations across regions, land-use history plays a central role in driving alternative successional pathways within human-modified landscapes. How land use affects succession depends on its intensity, spatial extent, frequency, duration and management practices, and is mediated by a complex combination of mechanisms acting on different ecosystem components and at different spatial and temporal scales. We review the literature aiming to provide a comprehensive understanding of the mechanisms underlying the long-lasting effects of land use on tropical forest succession and to discuss its implications for forest restoration. We organize it following a framework based on the hierarchical model of succession and ecological filtering theory. This review shows that our knowledge is mostly derived from studies in Neotropical forests regenerating after abandonment of shifting cultivation or pasture systems. Vegetation is the ecological component assessed most often. Little is known regarding how the recovery of belowground processes and microbiota communities is affected by previous land-use history. In published studies, land-use history has been mostly characterized by type, without discrimination of intensity, extent, duration or frequency. We compile and discuss the metrics used to describe land-use history, aiming to facilitate future studies. The literature shows that (i) species availability to succession is affected by transformations in the landscape that affect dispersal, and by management practices and seed predation, which affect the composition and diversity of propagules on site. Once a species successfully reaches an abandoned field, its establishment and performance are dependent on resistance to management practices, tolerance to (modified) soil conditions, herbivory, competition with weeds and invasive species, and facilitation by remnant trees. (ii) Structural and compositional divergences at early stages of succession remain for decades, suggesting that early communities play an important role in governing further ecosystem functioning and processes during succession. Management interventions at early stages could help enhance recovery rates and manipulate successional pathways. (iii) The combination of local and landscape conditions defines the limitations to succession and therefore the potential for natural regeneration to restore ecosystem properties effectively. The knowledge summarized here could enable the identification of conditions in which natural regeneration could efficiently promote forest restoration, and where specific management practices are required to foster succession. Finally, characterization of the landscape context and previous land-use history is essential to understand the limitations to succession and therefore to define cost-effective restoration strategies. Advancing knowledge on these two aspects is key for finding generalizable relations that will increase the predictability of succession and the efficiency of forest restoration under different landscape contexts.  相似文献   

7.
土壤易氧化有机碳对西双版纳热带森林群落演替的响应   总被引:5,自引:0,他引:5  
张哲  王邵军  李霁航  曹润  陈闽昆  李少辉 《生态学报》2019,39(17):6257-6263
土壤易氧化有机碳(Readily oxidizable carbon,ROC)作为土壤中易被氧化且活性较高的有机碳,能够敏感反映群落植被环境与土壤环境的早期变化。为探明土壤ROC时空变化对热带森林次生演替的响应,以西双版纳热带森林不同次生演替阶段(白背桐群落、野芭蕉群落与崖豆藤群落)为研究对象,采用高锰酸钾氧化法测定并分析土壤ROC时空动态特征,探究这些变化与土壤微生物量碳及理化性质之间的相互关系。结果表明:(1)不同次生演替阶段热带森林土壤ROC含量存在显著差异,其大小顺序为:野芭蕉群落(11.38 mg/g) > 崖豆藤群落(10.5 mg/g) > 白背桐群落(9.72 mg/g);(2)不同次生演替阶段热带森林土壤ROC含量的月份变化趋势基本一致,均表现为6月显著高于12月,且各月份间差异显著;(3)不同次生演替阶段热带森林土壤ROC含量随着土层深度增加而递减,且不同土层间差异显著;(4)土壤有机碳、微生物量碳、全氮、水解氮和铵态氮显著影响土壤ROC含量的时空变化,而pH值与土壤ROC显著负相关。因此,土壤ROC对西双版纳热带森林群落演替具有敏感的响应,土壤总有机碳、微生物量碳、全氮、水解氮、铵态氮及pH是土壤ROC时空变化的主控因素。  相似文献   

8.
9.
The adequate protection and sustainable management of a tropical rain forest requires a good knowledge of its biodiversity. Although considerable parts of Guyana's North-West District have been allocated as logging concessions, little has been published on the forest types present in this region. The present paper reviews the floristic composition, vegetation structure, and diversity of well-drained mixed and secondary forests in northwest Guyana. Trees, shrubs, lianas, herbs and hemi-epiphytes were inventoried in four hectare plots: two in primary forests, one in a 20-year-old secondary forest and one in a 60-year-old secondary forest. The primary forests largely corresponded with the Eschweilera–Licania association described by Fanshawe, although there were substantial variations in the floristic composition and densities of dominant species. The late-succession forest contained the highest number species and was not yet dominated by Lecythidaceae and Chrysobalanaceae. There is a need for updating the existing vegetation maps of northwest Guyana, as they were based on limited information. Large-scale forest inventories may provide a fair indication of species dominance and forest composition, but do not give a reliable insight in floristic diversity. Although previous reports predicted a general low diversity for the North-West District, the forests plots of this research were among the most diverse studied in Guyana so far. These results will hopefully influence the planning of protected areas in Guyana.  相似文献   

10.
西双版纳热带季节雨林的树种组成和群落结构动态   总被引:2,自引:0,他引:2  
胡跃华  曹敏  林露湘 《生态学报》2010,30(4):949-957
研究了西双版纳热带季节雨林1 hm2(hectare)动态监测样地1993年与2007年之间树种组成和群落结构的变化。对样地中胸径≥5 cm的乔木进行了每木调查。目前其树种组成的热带分布科、属所占比例分别为91%和94%,具有较高比例的热带植物区系性质。在1993年与2007年两次调查之间,树种数量由145种增至179种,仅有1到2个个体的稀有树种所占比例从54%降为51.1%。从森林的垂直结构来看,A、B、C三层的个体死亡率分别为12.8%、12.9%和19.0%,各层树木的增长率分别为-8.5%、-1.4%和44.8%。与此相对应,C层小径级的树木所占比例有较大提高。虽然小径级的树木在种类和数量上比例增大,但个体数量和种类组成相对稳定的A、B层优势树种变化不大,维持了群落结构的稳定性。14 a间,群落中新增加的具有先锋性质的树种不超过5个。1993年时,A、B两层尚有先锋树种存在,2007年已经从A、B两层中退出。因此,从14 a间树种组成和群落结构的变化来看,虽然具有树木的死亡和增补,但其物种成分和群落结构的总体格局没有明显的变化,处于动态平衡过程中。  相似文献   

11.
12.
13.
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.  相似文献   

14.
Rates of change in tree communities following major disturbances are determined by a complex set of interactions between local site factors, landscape history and structure, regional species pools and species life histories. Our analysis focuses on vegetation change following abandonment of agricultural fields or pastures, as this is the most extensive form of major disturbance in Neotropical forests. We consider five tree community attributes: stem density, basal area, species density, species richness and species composition. We describe two case studies, in northeastern Costa Rica and Chiapas, Mexico, where both chronosequence and annual tree dynamics studies are being applied. These case studies show that the rates of change in tree communities often deviate from chronosequence trends. With respect to tree species composition, sites of different ages differ more than a single site followed over time through the same age range. Dynamic changes in basal area within stands, on the other hand, generally followed chronosequence trends. Basal area accumulation was more linked with tree growth rates than with net changes in tree density due to recruitment and mortality. Stem turnover rates were poor predictors of species turnover rates, particularly at longer time-intervals. Effects of the surrounding landscape on tree community dynamics within individual plots are poorly understood, but are likely to be important determinants of species accumulation rates and relative abundance patterns.  相似文献   

15.
Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests.  相似文献   

16.
Extreme disturbance events denote another aspect of global environmental changes archetypal of the Anthropocene. These events of climatic or anthropic origin are challenging our perceived understanding about how forests respond to disturbance. I present a general framework of tropical forest responses to extreme disturbance events with specific examples from tropical dry forests. The linkage between level of disturbance severity and dominant mechanism of vegetation recovery is reflected on a variety of initial trajectories of forest succession. Accordingly, more realistic and cost‐effective restoration goals in many tropical forests likely consist in maintaining a mosaic of different successional trajectories while promoting landscape connectivity, rather than encouraging full‐ecosystem recovery to pre‐disturbance conditions. Incorporating extreme disturbance events into the global restoration ecology agenda will be essential to design well‐informed ecosystem management strategies in the coming decades.  相似文献   

17.
18.
广东南澳岛次生林的群落结构分析   总被引:9,自引:1,他引:9  
周厚诚  任海  彭少麟 《广西植物》2001,21(3):209-214,251
研究了广东南澳岛的 3个次生林群落的物种结构、水平结构、垂直结构和组织水平结构。这 3个次生林的植物物种数为 1 7~ 3 0种 ,主要种类为鸭脚木、假苹婆、土蜜树、降真香等 ,这些树种与大陆同地带的鼎湖山、白云山次生林群落的种类具相似性。这些群落的高度为 9~ 1 2 m,可分为乔木、灌木和草本层 3个层次。乔木层的平均个体密度为 0 .5 4~ 1 .74株 /m2。群落的多样性指数为 2 .1 1~ 3 .0 2 ,均匀度 0 .5 4~ 0 .87,生态优势度 0 .1 2~0 .40。南澳岛的次生林群落是该岛乡土树种物种库的主要承载者 ,这些次生林对整个岛屿的物种库和生态系统多样性的形成和维持具有重要的作用。可充分利用海岛上残存的次生林缀块 ,通过建立人工廊道 ,从而形成缀块—廊道—基底格局 ,以利于整个海岛顶极群落的早日形成。文中还比较了南澳岛退化草坡、人工林和次生林群落的结构 ,并建议通过人工造林在退化草坡上恢复森林 ,对现有的人工林进行改造 ,继续保护和管理次生林。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号