首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although fibrin-bound thrombin is resistant to inactivation by heparin.antithrombin and heparin.heparin cofactor II complexes, indirect studies in plasma systems suggest that the dermatan sulfate.heparin cofactor II complex can inhibit fibrin-bound thrombin. Herein we demonstrate that fibrin monomer produces a 240-fold decrease in the heparin-catalyzed rate of thrombin inhibition by heparin cofactor II but reduces the dermatan sulfate-catalyzed rate only 3-fold. The protection of fibrin-bound thrombin from inhibition by heparin.heparin cofactor II reflects heparin-mediated bridging of thrombin to fibrin that results in the formation of a ternary heparin.thrombin.fibrin complex. This complex, formed as a result of three binary interactions (thrombin.fibrin, thrombin.heparin, and heparin.fibrin), limits accessibility of heparin-catalyzed inhibitors to thrombin and induces conformational changes at the active site of the enzyme. In contrast, dermatan sulfate binds to thrombin but does not bind to fibrin. Although a ternary dermatan sulfate. thrombin.fibrin complex forms, without dermatan sulfate-mediated bridging of thrombin to fibrin, only two binary interactions exist (thrombin.fibrin and thrombin. dermatan sulfate). Consequently, thrombin remains susceptible to inactivation by heparin cofactor II. This study explains why fibrin-bound thrombin is susceptible to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin.  相似文献   

2.
RNA aptamers specific for bovine thrombin   总被引:4,自引:0,他引:4  
Bovine thrombin is widely used in clinical wound healing after surgery. There is 85% homology between bovine thrombin and human thrombin, so most antibodies against bovine thrombin cross-react with human thrombin. Rare antibodies against bovine thrombin but not cross-reacting with human thrombin have been reported. RNA ligands (aptamers) have been used to bind to target molecules with sometimes higher specificity than antibodies. Here we report the isolation of aptamers specific for bovine thrombin by systematic evolution of ligands by exponential enrichment (SELEX) from an RNA pool containing a 25-nucleotide randomized region. After seven rounds of selection, two aptamers specific for bovine thrombin were identified with a K(d) of 164 and 240 nM, respectively. Significantly, these aptamers do not bind to human thrombin. Secondary structure prediction revealed potential stem-loop structures for these RNAs. Both RNA aptamers inhibit only bovine thrombin-catalyzed fibrin clot formation in vitro. Competition assay results suggested that the RNA aptamers might bind to the electropositive domain of bovine thrombin, that is, heparin-binding site, instead of fibrinogen-recognition exosite. The resulting bovine-specific thrombin inhibitor might be used in some clinical applications when bovine thrombin activity needs to be contained or in research where human and bovine thrombin need to be distinguished.  相似文献   

3.
Single-stranded DNA molecules containing a 15-nucleotide consensus sequence have been reported to inhibit thrombin activity. The mechanism of the inhibition was studied using a consensus 15-mer oligonucleotide and two recombinant mutant thrombins: the anion-binding exosite mutant thrombin R70E, and thrombin K154A, in which the mutation was located in a surface loop outside of the exosite. The consensus 15-mer oligonucleotide inhibited both fibrinogen-clotting and platelet-activation activities of plasma-derived thrombin, recombinant wild type thrombin, and mutant thrombin K154A in a sequence-specific and dose-dependent manner, whereas it did not inhibit either activity of mutant thrombin R70E. The 15-mer oligonucleotide also inhibited thrombomodulin-dependent protein C activation by plasma-derived thrombin. In competition equilibrium binding experiments, binding of 125I-labeled diisopropyl phosphoryl-thrombin to thrombomodulin was completely inhibited by the consensus 15-mer oligonucleotide with a Kd value of 2.68 +/- 0.16 nM. These results suggest that Arg-70 in the anion-binding exosite of thrombin is a key determinant for interaction with specific single-stranded DNA molecules, and that binding of single-stranded DNA molecules to the exosite prevents the interaction of thrombin with fibrinogen, the platelet thrombin receptor, and thrombomodulin.  相似文献   

4.
The examination carried out with thrombin marked by 131J resulted in a considerable increase of the thrombin clearance rate in healty male rats during the stress (caused by an immobilization lasting 30 minutes) and in an increase of thrombin deposits in the liver. A further increase of thrombin clearance occurred by the combination of immobilization and administration of ACTH. Contrary to ACTH the thrombin clearance is not stimulated in healthy animals by hydrocortisone. Thrombin clearance and thrombin deposits in the liver are lowered in adrenalectomized rats. In these animals the administration of ACTH does not result in an increase of thrombin clearance. The rate of thrombin clearance is normalized in adrenalectomized animals after administering hydrocortisone without as well as under conditions of stress. In adrenalectomized animals having received hydrocortisone as well as in healthy animals the administration of ACTH will results in an increase of thrombin clearance. From these experiments the conclusion can be drawn that ACTH will increase the intensity of thrombin clearance in stress and that hydrocortisone plays a transmitting part here.  相似文献   

5.
Human endothelial cell thrombin receptors were functionally expressed in Xenopus laevis oocytes by injection of RNA extracted from human umbilical vein endothelial cells. Oocytes injected with endothelial cell RNA responded to thrombin with a Ca2(+)-dependent depolarizing current whose size depended on the amount of RNA injected. In oocytes expressing thrombin receptors, thrombin caused homologous but not heterologous desensitization. Both the catalytic and anion-binding exosites of thrombin were necessary to elicit depolarizing currents. Thus, Xenopus laevis oocytes injected with mRNA from human endothelial cells express Ca2(+)-dependent thrombin receptors which share many common features with thrombin receptors on intact endothelial cells. Xenopus oocytes may, therefore, be used as a screening system in the expression cloning of the endothelial cell thrombin receptor.  相似文献   

6.
Two aptamers that bind separately with exosite I or exosite II of thrombin were studied for better understanding of the binding effect of aptamers on thrombin. CD and intrinsic fluorescence spectra indicated that after binding with aptamers the secondary structure of thrombin seemed unchanged, but the whole conformation of thrombin changed. The binding of aptamers on thrombin also made the catalytic activity of thrombin toward the chromogenic substrate (β-Ala-Gly-Arg-p-nitroanilide diacetate) increased. The present study indicated that the allostery of the two exosites seemed to be independent.  相似文献   

7.
α-Thrombin is chemotactic for human monocytes with optimal activity between 10-100 nM. The mechanism by which this response is mediated remains a point of controversy. The purpose of this study was to compare the chemotactic activity of proteolytically inactive thrombin (active site Ser195 → Ala mutant or Phe-Pro-Arg-chloromethyl ketone-inactivated thrombin) to thrombin and the "tethered ligand" thrombin receptor agonist peptide SFLLRN (single-letter amino acid code). Monocyte chemotaxis was compared to an optimal concentration (10 nM, considered to be 100%) of formyl-Met-Leu-Phe (fMLP). Proteolytically inactive thrombin (38% of fMLP) had similar chemotactic activity to active thrombin (46% of fMLP) at a concentration of 100 nM. Chemotaxis to SFLLRN was comparable to that of a control hexapeptide (FSLNLR) which is not an agonist for the tethered ligand thrombin receptor. Cross-desensitization experiments showed that pretreatment of monocytes with either mutant or active thrombin reduced subsequent chemotaxis to both thrombin chemotaxins. Pretreatment with SFLLRN did not decrease subsequent chemotaxis to either form of thrombin. Calcium flux measurements showed that both active thrombin and SFLLRN induced a rapid increase in monocyte and platelet intracellular calcium concentration. However, there was no intracellular calcium change in response to mutant thrombin or FSLNLR. Likewise, active thrombin and SFLLRN induced a rapid net increase in polymerized actin, but mutant thrombin and FSLNLR did not. By contrast, both active and mutant thrombin induced a polarization of monotocyte morphology and actin distribution. This polarization has been associated with directed migration in many cell types. SFLLRN, however, induced a symmetrical increase in polymerized actin. These results suggest that measurements of intracellular calcium and polymerized actin are not perfect surrogate tests for true chemotactic activity. These results show that thrombin proteolysis is not required for monocyte chemotaxis and may be mediated by interaction with a binding site other than the tethered ligand thrombin receptor.  相似文献   

8.
9.
Loss of sensitivity to thrombin following an initial response is characteristic of a number of cell types, including platelets. It has recently been proposed that thrombin receptors resemble other G protein-coupled receptors, but that activation involves a novel mechanism in which thrombin cleaves the receptor, exposing a new N terminus that serves as the ligand for the receptor. Based upon this model, we have examined the mechanism of thrombin receptor desensitization by comparing the effects of thrombin with those of a peptide corresponding to the N-terminal sequence of the receptor following proteolysis by thrombin: SFLLRNPNDKYEPF or TRP42/55. Like thrombin, TRP42/55 stimulated pertussis toxin-sensitive inositol 1,4,5-trisphosphate formation, raised cytosolic Ca2+, and inhibited cAMP formation in the megakaryoblastic HEL cell line. Exposure to either thrombin or TRP42/55 desensitized the cells to both, but not to a third agonist, neuropeptide Y. The rate of recovery after desensitization depended upon the order of agonist addition. Resensitization of the cell to thrombin following a brief exposure to thrombin required up to 24 h and could be inhibited with cycloheximide. Resensitization to TRP42/55 after exposure to thrombin, or to thrombin after exposure to TRP42/55, on the other hand, was detectable within 30 min and could be inhibited by serine/threonine phosphatase inhibitors, but not by cycloheximide. Loss of responsiveness to thrombin and TRP42/55 was also observed following addition of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). However, while the protein kinase inhibitor staurosporine completely prevented the desensitization caused by TPA, it had only a limited effect on the desensitization caused by TRP42/55. These results demonstrate that the G protein-mediated effects of thrombin can be reproduced by a receptor-derived peptide and suggest that desensitization occurs by at least two mechanisms. The first, which is seen with thrombin, but not TRP42/55, involves proteolysis and requires protein synthesis for recovery. The second, which occurs with TRP42/55 and TPA, as well as with thrombin, involves phosphorylation, possibly of the receptor itself. Although protien kinase C is activated by thrombin and is presumably responsible for the desensitization caused by TPA, it does not appear to play a major role in receptor desensitization caused by thrombin and TRP42/55. This suggests that other kinases, such as those which inactivate adrenergic receptors and rhodopsin, are involved in the down-regulation of thrombin receptor function.  相似文献   

10.
In the last two decades it has become apparent that thrombin has many extravascular effects that are mediated by a family of protease-activated receptors (PARs). PAR-1, -3 and -4 are activated via cleavage by thrombin. The importance of extravascular thrombin in modulating ischemic, hemorrhagic and traumatic injury in brain has recently become clear. Thus, in vitro, thrombin at low concentration protects neurons and astrocytes from cell death caused by a number of different insults. In vivo, pretreating the brain with a low dose of thrombin (thrombin preconditioning), attenuates the brain injury induced by a large dose of thrombin, an intracerebral hemorrhage or by focal cerebral ischemia. Thrombin may also be an important mediator of ischemic preconditioning. In contrast, high doses of thrombin kill neurons and astrocytes in vitro and cause disruption of the blood-brain barrier, brain edema and seizures in vivo. This review examines the role of thrombin in brain injury and the molecular mechanisms and signaling cascades involved.  相似文献   

11.
R A Henriksen  K G Mann 《Biochemistry》1988,27(26):9160-9165
A congenitally dysfunctional form of prothrombin, prothrombin Quick, was isolated from the plasma of an individual with less than 2% of normal prothrombin activity. Following activation of prothrombin Quick, two dysfunctional thrombins, thrombin Quick I and thrombin Quick II, were isolated. Functional characterization of thrombin Quick I indicated an increase in KM and a decrease in kcat, relative to thrombin, for release of fibrinopeptide A. Comparison of kcat/KM for thrombin Quick I to the value obtained for thrombin yielded a relative catalytic efficiency of 0.012 for thrombin Quick I [Henriksen, R. A., & Owen, W. G. (1987) J. Biol. Chem. 262, 4664-4669]. Lysyl endopeptidase digestor of reduced and S-carboxymethylated thrombin and thrombin Quick I has resulted in the identification of an altered peptide in this dysthrombin. Edman degradation of the isolated peptide has shown that the altered residue in this protein is Arg-382 which is replaced by Cys. This could result from a point mutation in the Arg codon, CGC, to yield TGC. Together, these results indicate that Arg-382 is a critical residue in determining the specificity of thrombin toward fibrinogen. Similar relative activities for thrombin Quick I in stimulating platelet aggregation, in the release of prostacyclin from human umbilical vein endothelium, and in the release of fibrinopeptide A suggest that these activities of thrombin share the same specificity determinants.  相似文献   

12.
We studied thrombin binding to proliferating and confluent endothelial cells derived from bovine vascular endothelium. [125]thrombin was incubated with nonconfluent or confluent endothelial cells and both the total amount bound and the amount linked in a 77,000-dalton thrombin- cell complex were determined. Approximately 230,000 molecules of thrombin bound per cell in nonconfluent cultures compared to 12,800 molecules per cell in confluent cultures. Approximately 67,7000 thrombin molecules were bound in an apparently covalent complex, Mr = 77,000, with each cell in sparse cultures, whereas only 4,600 thrombin molecules per cell were bound in this complex with confluent cultures. Similar studies with [125I]thrombin and endothelial cells derived from bovine cornea revealed no difference either in the total amount of thrombin bound or in the amount bound in the 77,000-dalton complex using sparse or confluent cultures. When confluent vascular endothelial cultures were wounded, additional cellular binding sites for the 77,000- dalton complex with thrombin appeared within 24 h. A 237% increase in the amount of thrombin bound to these sites was induced by a wound which resulted in a 20% decrease in cell number in the monolayer. There was no significant increase in thrombin binding to other cellular sites at 24 h. These experiments provide evidence that the first change in thrombin binding after injury is an increase in the cellular sites involved in the 77,000-dalton complex, and suggest that thrombin binding to endothelial cells may be important in the vascular response to injury.  相似文献   

13.
To elucidate the thrombin domains required for high-affinity binding and platelet activation, the platelet binding properties of thrombin and two mutant thrombins, thrombin Quick I and Quick II, were compared to their agonist effects in elevating intraplatelet [Ca2+]. In Quick I, a mutation within the fibrinogen binding groove results in decreased clotting and platelet aggregating activities, whereas in Quick II, a mutation in the primary substrate binding pocket abolishes both activities. Dysthrombin binding was decreased compared to thrombin. The fibrinogen binding groove appeared more important than the primary substrate pocket for high-affinity binding since Quick I showed drastically reduced, and Quick II only slightly reduced, binding affinity (Kd approximately 200 and approximately 10 nM, respectively). The deduced interaction of thrombin with its high-affinity binding site indicated that the thrombin catalytic site is directed toward the platelet surface and therefore, when bound, is proteolytically inactive. Quick I (0.5-5 nM) elicited intraplatelet [Ca2+] fluxes at concentrations where high-affinity binding was undetectable. Saturation of high-affinity binding sites with active-site-modified thrombin did not affect thrombin-induced (0.5 nM) or Quick I-induced (5 nM) responses. In contrast, addition of D-Phe-Pro-Arg chloromethyl ketone (FPRCK) subsequent to thrombin or Quick I stimulation of platelets abolished agonist-induced responses. Since Quick I was only 10-17% as effective as thrombin in increasing intraplatelet [Ca2+], our data support a model in which thrombin acts enzymatically on a platelet membrane "substrate", through an interaction mediated in part by the fibrinogen binding groove of thrombin. This conclusion is consistent with the inhibition observed with high concentrations (greater than 100 nM) of Quick II and FPRCK-modified thrombin (FPR-thrombin) in platelets stimulated with low concentrations of thrombin (less than 0.5 nM) or Quick I (less than 2 nM), consistent with inhibition by substrate depletion. In contrast, concentrations of FPR-thrombin or Quick II (less than 100 nM), which saturated predominantly the high-affinity binding sites, enhanced the platelet responses induced by thrombin (less than 0.5 nM). Thus, occupation of the high-affinity sites with inactive thrombin increased the concentration of active thrombin available for substrate interaction. Quick I-induced responses were not enhanced, consistent with its inability to interact with the high-affinity site. Since thrombin bound to the high-affinity site is proteolytically inactive, we hypothesize that the thrombin high-affinity binding site on platelets functions to alter thrombin activity and platelet activation.  相似文献   

14.
Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during the inhibitory process. Protection from inhibition by antithrombin and heparin cofactor II requires ligation of both exosites 1 and 2 because minimal protection is seen when exosite 1 variants (gamma-thrombin and thrombin Quick 1) or an exosite 2 variant (Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala thrombin) is substituted for thrombin. Likewise, the rate of thrombin inhibition by the heparin-independent inhibitor, alpha1-antitrypsin Met358 --> Arg, is decreased less than 2-fold in the presence of soluble fibrin and heparin. In contrast, thrombin is protected from inhibition by a covalent antithrombin-heparin complex, suggesting that access of heparin to exosite 2 of thrombin is hampered when ternary complex formation occurs. These results reveal the importance of exosites 1 and 2 of thrombin in assembly of the ternary complex and the subsequent protection of thrombin from inhibition by heparin-catalyzed inhibitors.  相似文献   

15.
Studies on the mechanism of thrombin. Interaction with fibrin   总被引:9,自引:0,他引:9  
Fibrin monomer Sepharose was used to investigate the interactions of thrombin with fibrin. Thrombin binding was found to be reversible and saturable and to depend on the thrombin: fibrin ratio. Scatchard analysis indicated a single class of binding sites with K alpha = 4.9 X 10(5) M-1. Ca2+ ions caused rapid desorption and elution of thrombin from fibrin monomer, and the Ca2+ concentration needed for maximal desorption depended on the fibrin:thrombin ratio. Mg2+, Mn2+, and Sr2+ also released thrombin from fibrin monomer but not as efficiently as Ca2+. These results indicate that divalent metal ions induce a physical change in fibrin monomer which results in desorption of thrombin. Thrombin binding to fibrin in a gel was compared to binding to fibrin monomer. These studies showed that as fibrin monomers polymerize to form the gel network, thrombin is released. Under static conditions the released thrombin remains associated with the gel because diffusion is limited by the gel. However, the thrombin can be readily removed when buffer is allowed to flow through the gel. These results lead to the possibility that thrombin binding to fibrin monomer and its subsequent release, either by Ca2+ or by polymerization, may have important consequences for regulating the effective thrombin concentration in vivo.  相似文献   

16.
The domain of thrombomodulin that binds to the anion-binding exosite of thrombin was identified by comparing the binding of fragments of thrombomodulin to thrombin with that of Hirugen, a 12-residue peptide of hirudin that is known to bind to the anion-binding exosite of thrombin. Three soluble fragments of thrombomodulin, containing (i) the six repeated growth factor-like domains of thrombomodulin (GF1-6), (ii) one-half of the second through the sixth growth factor-like repeats (GF2.5-6), or (iii) the fifth and sixth such domains (GF5-6), were examined. Hirugen was a competitive inhibitor for either GF1-6 or GF2.5-6 stimulation of thrombin activation of protein C. GF5-6, which binds to thrombin without altering its ability to activate protein C, competed with fluorescein-labeled Hirugen for binding to thrombin. Therefore, all three thrombomodulin fragments, each of which lacked the chondroitin sulfate moiety, competed with Hirugen for binding to thrombin. To determine whether GF5-6 and Hirugen were binding to overlapping sites on thrombin or were interfering allosterically with each other's binding to thrombin, the effects of each thrombomodulin fragment and of Hirugen on the active site conformation of thrombin were compared using two different approaches: fluorescence-detected changes in the structure of the active site and the hydrolysis of chromogenic substrates. The GF5-6 and Hirugen peptides affected these measures of active site conformation very similarly, and hence GF5-6 and Hirugen contact residues on the surface of thrombin that allosterically alter the active site structure to a similar extent. Full-length thrombomodulin and GF1-6 alter the active site structure to comparable extents, but the amidolytic activity of thrombin complexed to thrombomodulin or GF1-6 differs significantly from that of thrombin complexed to GF5-6 or Hirugen. Taken together, these results indicate that the GF5-6 domain of thrombomodulin binds to the anion-binding exosite of thrombin. Furthermore, the binding of GF5-6 to the anion-binding exosite alters thrombin specificity, as evidenced by GF5-6-dependent changes in both the kcat and Km of synthetic substrate hydrolysis by thrombin. The contact sites on thrombin for the GF4 domain and the chondroitin sulfate moiety of thrombomodulin are still unknown.  相似文献   

17.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

18.
The localization of thrombin receptors on mouse embryo (ME) cells has been examined by direct fluorescence microscopy using a fluorescein aminelabeled thrombin. Two fluorescein amines, 4-(N-6-aminoethyl thioureal)-fluorescein and 4-(N-6-aminohexyl thioureal)-fluorescein, were synthesized and attached to the carbohydrate moiety of highly purified human α-thrombin by periodate oxidation of the carbohydrate and selective reduction of the Schiff's base using sodium cyanoborohydride. Preparations of fluorescent thrombin with from 1 to 4 fluoresceins per molecule of thrombin retained their ability to proteolytically cleave fibrinogin to form fibrin clots, to bind to thrombin receptors on ME cells, and to initiate cell division. After incubating mitogenic concentrations of the fluorescein amine labeled thrombin with ME cells at 4°C, a diffuse fluorescent pattern was observed over the surface of the ME cells. This diffuse pattern was specific: it was not observed on cells from parallel cultures incubated with fluorescent thrombin plus a 20-fold excess of unlabeled thrombin. Thus, thrombin receptors appear to be distributed randomly over the surface of ME cells prior to interaction with thrombin. Increasing the temperature to 37°C following binding at 4° C resulted in a rapid dissociation of the fluorescent pattern from the cells leaving only the autofluorescent vesicles. This result may reflect the unique ability of thrombin to proteolytically cleave its own receptor.  相似文献   

19.
The endothelial cell surface membrane protein thrombomodulin binds thrombin with high affinity and acts as both a cofactor for protein C activation and an inhibitor of fibrinogen hydrolysis. We have previously shown that bovine thrombomodulin is a competitive inhibitor of fibrinogen binding to thrombin but has no effect on thrombin activity toward tripeptide substrates or antithrombin III. Hence, thrombomodulin and fibrinogen may share macromolecular specificity sites on thrombin which are distinct from the active site. In this investigation, we have studied the interaction of thrombin-thrombomodulin with fibrinogen and various thrombin derivatives. We show that fibrinogen is a competitive inhibitor of thrombomodulin binding to thrombin, with a Kis = 10 microM. Thrombin derivatives (bovine (pyridoxal phosphate)4-thrombin and human thrombin Quick I), which bind fibrinogen with much reduced affinity, are shown to also interact with thrombomodulin with greatly reduced affinity. These results are consistent with the hypothesis that thrombomodulin and fibrinogen share macromolecular specificity sites on thrombin.  相似文献   

20.
Human α thrombin acts as a mitogen for cultures of resting chick embryo fibroblasts (CEF) in serum free medium. The use of 125I-labeled thrombin shows that thrombin specifically binds to CEF and that after a lag of approximately 30 to 60 minutes it can not be removed by subsequent exposure to trypsin. The entry of 125I thrombin into the trypsin-insensitive domain is not inhibited to any great extent by excess unlabelled thrombin. The cell-associated thrombin retains its native molecular weight and its catalytic activity toward synthetic amide substrates. It appears to be located in the crude nuclear fraction of homogenized CEF cells. The association of thrombin with CEF is specific, since the non-mitogenic serine protease chymotrypsin is internalized to a much lesser extent than thrombin. The data are discussed in terms of a possible intracellular site for thrombin's mitogenic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号