首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial impairment, glutathione depletion and oxidative stress have been implicated in the pathogenesis of Parkinson's disease (PD), linked recently to proteasomal dysfunction. Our study analysed how these factors influence the various activities of the proteasome in human SH-SY5Y neuroblastoma cells treated with the PD mimetics MPP+ (a complex 1 inhibitor) or dopamine. Treatment with these toxins led to dose- and time-dependent reductions in ATP and glutathione and also chymotrypsin-like and post-acidic like activities; trypsin-like activity was unaffected. Antioxidants blocked the effects of dopamine, but not MPP+, suggesting that oxidative stress was more important in the dopamine-mediated effects. With MPP+, ATP depletion was a prerequisite for loss of proteasomal activity. Thus in a dopaminergic neuron with complex 1 dysfunction both oxidative stress and ATP depletion will contribute independently to loss of proteasomal function. We show for the first time that addition of MPP+ or dopamine to purified samples of the human 20S proteasome also reduced proteasomal activities; with dopamine being most damaging. As with toxin-treated cells, chymotrypsin-like activity was most sensitive and trypsin-like activity the least sensitive. The observed differential sensitivity of the various proteasomal activities to PD mimetics is novel and its significance needs further study in human cells.  相似文献   

2.
Abstract: The effect of glial cell line-derived neurotrophic factor (GDNF) on the growth of mesencephalic dopaminergic neurons and on their survival following exposure to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was examined in vitro. In cultures developing under normal conditions, GDNF at 1 ng/ml optimally improved the survival and stimulated the growth of dopaminergic neurons without affecting glial growth. In cultures treated with MPP+, GDNF could not prevent toxicity to dopaminergic neurons. The uptake of [3H]dopamine and the number of tyrosine hydroxylase-positive neurons were similarly reduced by MPP+ in the presence or absence of GDNF. However, after removal of MPP+, GDNF protected dopaminergic neurons from the continuous cell death and stimulated the regrowth of dopaminergic fibers damaged by MPP+. We conclude that GDNF supports the growth of normally developing dopaminergic neurons and stimulates their survival and recovery after damage. These findings suggest that GDNF could be useful in the development of therapeutic approaches to Parkinson's disease, which is characterized by dopaminergic cell loss.  相似文献   

3.
Abstract: Incubation of 10 m M I-methyl-4-phenylpyridinium (MPP+) with sonicated beef heart mitochondria caused an irreversible time-dependent decrease in NADH-ubiquinone-l (CoQ1) reductase activity (52% inhibition after 1 h). Inclusion of glutathione, ascorbate, or catalase in the incubation mixture protected the NADH-CoQ1 reductase activity. These results suggest that the interaction of MPP+ with complex I induces free radical generation, which in turn leads to the irreversible inhibition of complex I activity. The generation of free radicals by neurotoxin-induced inhibition of complex I has important implications for our interpretation of the increased oxidative stress observed in Parkinson's disease substantia nigra and for our understanding of the cause(s) of dopaminergic cell death in this disorder.  相似文献   

4.
Oxidative stress and down-regulated trophic factors are involved in the pathogenesis of nigrostriatal dopamine(DA)rgic neurodegeneration in Parkinson's disease. Fibroblast growth factor 9 (FGF9) is a survival factor for various cell types; however, the effect of FGF9 on DA neurons has not been studied. The antioxidant melatonin protects DA neurons against neurotoxicity. We used MPP+ to induce neuron death in vivo and in vitro and investigated the involvement of FGF9 in MPP+ intoxication and melatonin protection. We found that MPP+ in a dose- and time-dependent manner inhibited FGF9 mRNA and protein expression, and caused death in primary cortical neurons. Treating neurons in the substantia nigra and mesencephalic cell cultures with FGF9 protein inhibited the MPP+-induced cell death of DA neurons. Melatonin co-treatment attenuated MPP+-induced FGF9 down-regulation and DA neuronal apoptosis in vivo and in vitro . Co-treating DA neurons with melatonin and FGF9-neutralizing antibody prevented the protective effect of melatonin. In the absence of MPP+, the treatment of FGF9-neutralizing antibody-induced DA neuronal apoptosis whereas FGF9 protein reduced it indicating that endogenous FGF9 is a survival factor for DA neurons. We conclude that MPP+ down-regulates FGF9 expression to cause DA neuron death and that the prevention of FGF9 down-regulation is involved in melatonin-provided neuroprotection.  相似文献   

5.
6.
Abstract: Recent reports suggest that NMDA receptor antagonists when administered in vivo can protect dopaminergic neurons from the toxic actions of MPP+. In the present study the possible neuroprotective effects against MPP+ toxicity of the noncompetitive NMDA receptor antagonist MK-801 was studied in primary cultures of fetal rat mesencephalic dopamine neurons. MK-801 failed to protect dopaminergic neurons from MPP+ toxicity at concentrations that completely block NMDA-induced toxicity of these same neurons. In contrast to work carried out in cerebellar granule cells, MPP+ toxicity of mesencephalic dopamine neurons was unaffected by preexposure to subtoxic concentrations of either NMDA or cycloheximide. Our findings suggest that the toxic effects of MPP+ on dopaminergic neurons are not mediated through a direct interaction with the NMDA subtype of glutamate receptor.  相似文献   

7.
Abstract: Parkinson's disease may be linked to defects in mitochondrial function. Mitochondrially transformed cells (cybrids) were created from Parkinson's disease patients or disease-free controls. Parkinson's disease cybrids had 26% less complex I activity, but maintained comparable basal calcium and energy levels. Parkinson's disease cybrids recovered from a carbachol-induced increase in cytosolic calcium 53% more slowly than controls even with lanthanum and thapsigargin blockade. Inhibition of complex I with the Parkinson's disease-inducing metabolite 1-methyl-4-phenylpyridinium (MPP+) similarly reduced the rate of recovery after carbachol. This MPP+-induced reduction in recovery rates was much more pronounced in control cybrids than in Parkinson's disease cybrids. Parkinson's disease cybrids had less carbonyl cyanide m -chlorophenylhydrazone-releasable calcium. Bypassing complex I with succinate partially restored Parkinson's disease cybrid, and MPP+ suppressed control cybrid recovery rates. The subtle alteration in calcium homeostasis of Parkinson's disease cybrids may reflect an increased susceptibility to cell death under circumstances not ordinarily toxic.  相似文献   

8.
Abstract: Sporadic Parkinson's disease is associated with a defect in the activity of complex I of the mitochondrial electron transport chain. This electron transport chain defect is transmitted through mitochondrial DNA, and when expressed in host cells leads to increased oxygen free radical production, increased antioxidant enzyme activities, and increased susceptibility to programmed cell death. Pramipexole, a chemically novel dopamine agonist used for the treatment of Parkinson's disease symptoms, possesses antioxidant activity and is neuroprotective toward substantia nigral dopamine neurons in hypoxic-ischemic and methamphetamine models. We found that pramipexole reduced the levels of oxygen radicals produced by methylpyridinium ion (MPP+) both when incubated with SH-SY5Y cells and when perfused into rat striatum. Pramipexole also exhibited a concentration-dependent inhibition of opening of the mitochondrial transition pore induced by calcium and phosphate or MPP+. These results suggest that pramipexole may be neuroprotective in Parkinson's disease by attenuating intracellular processes such as oxygen radical generation and the mitochondrial transition pore opening, which are associated with programmed cell death.  相似文献   

9.
Abstract: Expression of the neurotoxicity of 1-methyl-4-phenyl-1.2,3,6-tetrahydropyridine, following oxidation to l-methyl-4-phenylpyridinium ion (MPP+), is believed to involve inhibition of mitochondrial electron transport from NADH dehydrogenase (complex l) to ubquinone. MPP+ and its analogues have been shown to Mock electron transport at or near the same site as two powerful inhibitors of mitochondrial respiration, rotenone and piericidin A. All three types of inhibitors combine at two sites on NADH dehydrogenase, a hydrophilic and hydrophobic one, and occupancy of both sites is required for complete inhibition. Tetraphenylboron anion (TPB) in catalytic amounts is known to increase the effectiveness of positively charged MPP+ analogues in blodclng mitochondrial respiration. A part of this effect involves facitation of the entry of MPP+ oongeners into the hydrophobic site by ion pairing, as has been demonstrated in studies with submitochondrial particles (electron transport particles). This communication documents the fact that TPB, when present in molar excess over the MPP+ analogues, reverses the inhibition. This seems to involve again strong ion pairing. removal of the inhibitory analogue from one to the two binding sites, and concentration of the inhibitor in the membrane, so that only the hydrophobic binding site remains occupied, resulting in lowering of the inhibiti to 30–40%.  相似文献   

10.
Abstract: The effects of the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its 4-electron oxidation product 1-methyl-4-phenylpyridinium (MPP+) were studied in isolated mitochondria and in mouse brain striatal slices. ADP-stimulated oxidation of NAD-linked substrates was inhibited in a time-dependent manner by MPP+ (0.1–0.5 m M ), but not MPTP, in mitochondria prepared from rat brain, mouse brain, or rat liver. Under identical conditions, succinate oxidation was relatively unaffected. In neostriatal slices prepared from the mouse, a species susceptible to the dopaminergic neurotoxicity of MPTP, incubation with either MPP+ or MPTP caused metabolic changes consistent with inhibition of mitochondnial oxidation, i.e., an increase in the formation of lactate and accumulation of the amino acids glutamate and alanine with concomitant decreases in glutamine and aspartate levels. The changes resulting from incubation with MPTP were prevented by the monoamine oxidase inhibitor pargyline, which blocks formation of MPP+ from MPTP. The results suggest that compromise of mitochondrial function and its metabolic sequelae within dopaminergic neurons could be an important factor in the neurotoxicity observed after MPTP administration.  相似文献   

11.
We examined neurodegeneration in spinal cord (SC) and role of such extra-nigral degeneration in MPTP-induced experimental parkinsonism in C57BL/6N mice. HPLC-photodiode array analysis confirmed presence of the active neurotoxin MPP+ in SC after single injection of MPTP (25 mg/kg, i.p.). Mitochondrial enzyme monoamine oxidase-B (MAO-B) responsible for in vivo conversion of MPTP to MPP+ was inhibited in SC by pre-treatment with l -deprenyl, a specific inhibitor of MAO-B. Besides in vitro conversion of MPTP to MPP+ occurred by SC mitochondrial preparation, which was inhibited by l -deprenyl implicating SC as a specific target of MPTP-neurotoxicity. Double immunofluorescent labeling and spectrofluorimetric assay via kynuramine oxidation showed MAO-B expression and activity in SC neurons. Localization of dopamine transporter immunoreactivity in SC along with specific uptake of 3H-MPP+ by SC synaptosomal preparation further confirmed SC as target of MPTP-neurotoxicity. Compared with control, increased neuronal death on the seventh day in SC of mice injected with MPTP (2 × 25 mg/kg, at 6 h interval) strongly suggested SC degeneration in pre-symptomatic phase of MPTP-induced experimental parkinsonism. Such extra-nigral neurodegeneration in Parkinson's disease indicated novel molecular mechanism preceding nigrostriatal degeneration and suggested designing broad therapeutic intervention for this complex movement disorder.  相似文献   

12.
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+) on the oxygen consumption, ATP production, H2O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect.  相似文献   

13.
The study was aimed at investigating in vivo and in vitro the involvement of the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway in MPP+-induced cytosolic phospholipase A2 (cPLA2) activation of dopaminergic neurons. MPP+ activated neuronal nitric oxide synthase (NOS)/soluble guanylyl cyclase/cGMP pathway in mouse midbrain and striatum, and in pheochromocytoma cell line 12 cells, and caused an upward shift in [Ca2+]i level in the latter. The activation was accompanied by increases in total and phosphorylated cPLA2, and increased arachidonic acid release. Effects of selective inhibitors [2-oxo-1,1,1-trifluoro-6,9-12,15-heneicosatetraene (AACOCF3), (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2h-pyran-2-one (BEL)] indicated the main impact of cPLA2 on arachidonic acid release in pheochromocytoma cell line 12 cells. Treatment of the cells with the protein kinase inhibitors GF102610x, UO126, and KT5823, and with the nitric oxide synthase (NOS) inhibitor NNLA revealed the involvement of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2), with the possible key role of PKG, in cPLA2 phosphorylation at Ser505. Inhibitors of cPLA2 and PKG increased viability and reduced MPP+-induced apoptosis of the cells. Our results indicate that the neuronal NOS/cGMP/PKG pathway stimulates cPLA2 phosphorylation at Ser505 by activating PKC and ERK1/2, and suggest that up-regulation of this pathway in experimental models of Parkinson's disease may mediate dopaminergic neuron degeneration and death through activation of cPLA2.  相似文献   

14.
Abstract: Microdialysis was used to evaluate the effect of desferrioxamine (DES) against 1-methyl-4-phenylpyridinium (MPP+) toxicity. The presence of DES (40 fmol-40 nmol/15 min for a total of 90 min) in the Ringer solution, coperfused with MPP+ (40 nmol/15 min) on day 1, produced on day 2 a higher extracellular dopamine output after perfusion of MPP+ than in control MPP+ perfusion experiments, in which no DES was administered on day 1. Both Ringer perfusion alone (control Ringer) and coperfusion of 40 nmol DES with 40 nmol MPP+ on day 1 produced on day 2 similar increases in extracellular dopamine output after a second MPP+ perfusion. In the control Ringer experiment, note that the MPP+ on day 2 is the first MPP+ perfusion. Perfusion of 800 fmol FeCl3/15 min along with 40 nmol MPP+ and 400 fmol DES on day 1 completely abolished on day 2 the neuroprotective effect found with 40 nmol MPP+ and 400 fmol DES; 800 fmol FeCl3 did not increase the neurotoxic effect of 40 nmol MPP+ perfusion. The ability of DES to protect against MPP+ toxicity may indicate a therapeutic strategy in the treatment of diseases when iron is implicated.  相似文献   

15.
Abstract: Excessive free radical formation or antioxidant enzyme deficiency can result in oxidative stress, a mechanism proposed in the toxicity of MPTP and in the etiology of Parkinson's disease (PD). However, it is unclear if altered antioxidant enzyme activity is sufficient to increase lipid peroxidation in PD. We therefore investigated if MPTP can alter the activity of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) and the level of lipid peroxidation. l -Deprenyl, prior to MPTP administration, is used to inhibit MPP+ formation and its subsequent effect on antioxidant enzymes. MPTP induced a threefold increase in SOD activity in the striatum of C57BL/6 mice. No parallel increase in GSH-PX or CAT activities was observed, while striatal lipid peroxidation decreased. At the level of the substantia nigra (SN), even though increases in CAT activity and reduction in SOD and GSH-PX activities were detected, lipid peroxidation was not altered. Interestingly, l -deprenyl induced similar changes in antioxidant enzymes and lipid peroxidation levels, as did MPTP. Taken together, these results suggest that an alteration in SOD activity, without compensatory increases in CAT or GSH-PX activities, is not sufficient to induce lipid peroxidation.  相似文献   

16.
Abstract: The ionic species 1-methyl-4-phenylpyridinium (MPP+) seems to be the metabolite responsible for the damage to dopaminergic neurons occurring after administration of the parkinsonian drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In the present study we show that the unilateral stereotaxic microinjection of MPP+ into the substantia nigra pars reticulata in rats produces immediately intense and long-lasting (up to 96 h) contralateral turning behavior in a dose-dependent manner. This behavioral effect was correlated with a dose- and time-dependent decrease (up to 90%) of glutamate decarboxylase activity and with a notable loss of neurons in the injected nigra reticulata. GABA levels in the injected nigra were also decreased, whereas the dopamine concentration in the ipsilateral striatum was not affected at 24 h, when maximal behavioral effects were observed. The circling behavior was prevented by the dopamine carrier blocker nomifensine only during the first 2 h, whereas the dopamine receptor antagonist haloperidol was ineffective. The results indicate that MPP+ is toxic for inhibitory GABAergic neurons in the nigra pars reticulata and, furthermore, suggest that disruption of the function of these GABAergic neurons may be involved in the abnormal motor behavior produced by the injection of MPP+ in the substantia nigra.  相似文献   

17.
Abstract: Exposure of various neuronal cells or cell lines to high concentrations of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), results in cell death. Recently, it has been reported that low concentrations of MPP+ induce apoptosis in susceptible neurons. We have further characterized MPP+-mediated toxicity of cultured cerebellar granule neurons (CGNs) and found that exposure of CGNs to relatively low concentrations of MPP+ results in apoptosis, whereas higher concentrations result in necrosis. Cotreatment of CGNs with MPP+ and the tetrapeptide inhibitor of caspase-3-like proteases, acetyl-DEVD-CHO, markedly attenuates apoptotic but not necrotic death of these neurons. The more specific inhibitor of caspase-1-like proteases, acetyl-YVAD-CHO, however, was ineffective against MPP+ neurotoxicity. Moreover, cytoplasmic extracts prepared from MPP+-treated CGNs contain markedly increased protease activity that cleaves the caspase-3 substrate acetyl-DEVD- p -nitroaniline. Finally, the cytoplasmic concentration of the apoptogenic protein cytochrome c was increased in a time-dependent fashion in MPP+-treated CGNs before the onset of apoptosis. Our data confirm that the neurotoxicity of MPP+ is due to both necrosis and apoptosis and suggest that the latter is mediated by activation of a caspase-3-like protease.  相似文献   

18.
Abstract: The ability of 7-nitroindazole (7-NI) to protect against MPTP-induced neurotoxicity has been attributed to its inhibition of neuronal nitric oxide synthase. In the present study, 7-NI was found to counteract almost completely striatal dopamine depletion caused by a single subcutaneus injection of 20 mg/kg MPTP in mice. This effect, however, was accompanied by a significant reduction in the striatal levels of MPP+, the toxic metabolite generated via monoamine oxidase B-catalyzed MPTP oxidation. In the presence of 7-NI, a dose of 40 mg/kg MPTP produced MPP+ concentrations similar to those measured after treatment with 20 mg/kg MPTP alone. A comparison of neurotoxicity in these two experimental conditions (i.e., mice treated with 20 mg/kg alone versus 40 mg/kg MPTP plus 7-NI) revealed only a slight (20%), but statistically significant, protection of dopamine depletion with 7-NI. These data indicate that the mechanism by which 7-NI counteracts MPTP neurotoxicity in mice is not due solely to inhibition of neuronal nitric oxide synthase, but involves a reduction in MPP+ formation.  相似文献   

19.
Abstract: The deleterious effect of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic neurons of the substantia nigra is well established. In addition, increased glutamatergic drive to basal ganglia output nuclei is considered a likely contributor to the pathogenesis of Parkinson's disease. One possibility for the increased excitatory tone may be related to an impairment in glutamate uptake. As astrocytes possess efficient transport mechanisms for both MPTP and glutamate, we have examined the effect of this agent on d -aspartate uptake into these cells. Treatment of cultures with 50 µ M MPTP for 24 h decreased uptake by 39%. Kinetic analysis revealed that this effect was due to a 35% decrease in V max with no change in the K m. Treatment with deprenyl, a monoamine oxidase B inhibitor, produced a complete reversal of MPTP-induced uptake inhibition, but was ineffective following exposure of cells to the MPTP metabolite, 1-methyl-4-phenylpyridinium (MPP+). Removal of MPTP from cultures resulted in a complete restoration of glutamate uptake after 24 h. These results show that MPTP reversibly compromises glutamate uptake in cultured astrocytes, which is dependent on the conversion of MPTP to MPP+. Such findings suggest that the glutamate transporter in astrocytes plays an important role in MPTP-induced neurotoxicity and possibly in parkinsonism.  相似文献   

20.
Abstract: Earlier studies from our laboratory have demonstrated that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity could be modulated by inhibitors and inducer of cytochrome P450 (P450) in an in vitro model consisting of sagittal slices of mouse brain. To understand the molecular mechanisms underlying the role of P450 on MPTP toxicity, it was undertaken to study the effect of the modulators of P450 on the toxicity of the metabolite of MPTP, namely, 1-methyl-4-phenylpyridinium ion (MPP+). Incubation of mouse brain slices with various concentrations of MPP+ (1–100 µ M ) resulted in dose-dependent inhibition of mitochondrial enzyme NADH-dehydrogenase (NADH-DH) and leakage of the cytosolic enzyme lactate dehydrogenase from the slice into the medium. MPP+-induced toxicity was abolished by pretreatment of the slices with inhibitors of monoamine oxidase (MAO; pargyline and deprenyl) or inhibitors of P450 (piperonyl butoxide or SKF-525A) or dopamine uptake blocker (GBR-12909), as measured by the activity of NADH-DH in slices and leakage of lactate dehydrogenase from the slice into the medium. Slices prepared from mice pretreated with phenobarbital (an inducer of P450) potentiated the toxic effects of MPP+. Pretreatment of slices with MAO-inhibitor, P450 inhibitors, or dopamine uptake blocker attenuated the uptake of MPP+ into the slices. In contrast, MPP+ uptake was significantly increased in slices prepared from phenobarbital-pretreated mice. Thus, both MAO and P450 inhibitors abolish the toxicity of MPP+ in the sagittal slices of mouse brain by altering the uptake of the toxin into the slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号