首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreasing the external sodium concentration ([Na+]e) to 10 mM in the presence of 280 mM sucrose had no significant effect on phosphocreatine (PCr) or on intracellular pH (pHi) as assessed using 31P nuclear magnetic resonance spectroscopy. Zero [Na+]e in the presence of 300 mM sucrose caused a fall in PCr levels to 50% of control values, and the pHi fell to 6.85 from a control value of 7.30. 1H nuclear magnetic resonance spectroscopy confirmed that the sucrose had not entered the tissue. The decreases in PCr content and in pHi, known to occur on depolarization using 40 mM external potassium concentration ([K+]e), were further decreased in the presence of 10 mM [Na+]e), to 51.4 +/- 4.0 and 6.80 +/- 0.10% of control values, respectively. The free intracellular magnesium concentration was significantly increased from a control value of 0.37 +/- 0.10 mM to 0.66 +/- 0.13 mM (p less than 0.001), when [Na+]e was decreased to 10 mM, but was not further affected by high [K+]e or zero Na+. Membrane permeabilities of the sodium substitutes N-methyl-D-glucamine (NMG), tris(hydroxymethyl)aminomethane (Tris), tetramethylammonium (TMA), and choline were assessed using 1H nuclear magnetic resonance spectroscopy. In the presence of 10 mM [Na+]e, NMG, TMA, and choline (all at 140 mM) were taken up and remained within the tissue for at least 2 h, but no uptake of Tris (140 mM) or sucrose (above) could be detected. Tissue lactate levels (from the lactate/N-acetyl aspartate ratio) increased in the presence of the substitutes that were taken up, although no change in pH was detected.  相似文献   

2.
The influx and efflux of calcium (as 45Ca) and influx of sodium (as 24Na) were studied in internally dialyzed squid giant axons. The axons were poisoned with cyanide and ATP was omitted from the dialysis fluid. The internal ionized Ca2+ concentration ([Ca2+]i) was controlled with Ca-EGTA buffers. With [Ca2+]i greater than 0.5 muM, 45Ca efflux was largely dependent upon external Na and Ca. The Nao-dependent Ca efflux into Ca-free media appeared to saturate as [Ca2+]i was increased to 160 muM; the half-saturation concentration was about 8 muM Ca2+. In two experiments 24Na influx was measured; when [Ca2+]i was decreased from 160 muM to less than 0.5 muM, Na influx declined by about 5 pmoles/cm2 sec. The Nao-dependent Ca efflux averaged 1.6 pmoles/cm2 sec in axons with a [Ca2+]i of 160 muM, and was negligible in axons with a [Ca2+]i of less than 0.5 muM. Taken together, the Na influx and Ca efflux data may indicate that the fluxes are coupled with a stoichiometry of about 3 Na+-to-1 Ca2+. Ca efflux into Na-free media required the presence of both Ca and an alkali metal ion (but not Cs) in the external medium. Ca influx from Li-containing media was greatly reduced when [Ca2+]i was decreased from 160 to 0.23 muM, or when external Li was replaced by choline. These data provide evidence for a Ca-Ca exchange mechanism which is activated by certain alkali metal ions. The observations are consistent with a mobile carrier mechanism which can exchange Ca2+ ions from the axoplasm for either 3 Na+ ions, or one Ca2+ and an alkali metal ion (but not Cs) from the external medium. This mechanism may utilize energy from the Na electrochemical gradient to help extrude Ca against an electrochemical gradient.  相似文献   

3.
Effects of extracellular calcium on canine tracheal smooth muscle   总被引:1,自引:0,他引:1  
Strips of canine tracheal smooth muscle were studied in vitro to determine the effects of changes in the extracellular calcium (Cao) concentration on tonic contractions induced by acetylcholine and 5-hydroxytryptamine. Strips were contracted with graded concentrations of the above agents in 2.4 mM Ca, after which CaCl2 was administered to achieve final concentrations of 5.0, 10.0, and 20.0 mM. Increases in Cao to 5 mM or above caused significant relaxation of muscles contracted with 5-hydroxytryptamine but did not significantly relax muscles contracted with acetylcholine. Increases in Cao also caused significant relaxation of muscles contracted with low concentrations of K+ (20 or 30 mM). However, in 60 or 120 mM K+, increases in Cao resulted predominantly in muscle contraction. Inhibition of the Na+-K+-ATPase by ouabain (10(-5) M) or K+ depletion reversed the effects of Cao from relaxation to contraction in tissues contracted with 5-hydroxytryptamine. Increases in Cao also caused contraction rather than relaxation in the presence of verapamil (10(-6) M). We conclude that calcium has both excitatory and inhibitory effects on the contractile responses of canine tracheal smooth muscle. The inhibitory effects of Ca2+ appear to be linked to the activity of the membrane Na+-K+-ATPase.  相似文献   

4.
The effects of Na-free and of K-free solutions on the membrane potential, on tension development, and on 45Ca exchange have been investigated in rabbit ear artery. The contraction induced by Na-free solutions and the tension which develops in K-free solutions after a delay of about 1 h are both submaximal. Exposure for 4 h to K-free solutions does not affect the membrane potential, whereas Na-free solutions depolarize the cells by 10-20 mV, depending on the Na-substitute. Neither the amplitude nor the rate constant of the slowly exchanging 45Ca-fraction is affected by these experimental procedures. Substituting external Na by choline or TMA induces a transient increase of the 45Ca-efflux rate which does not occur in a Ca-free efflux medium, and which can be blocked with La. K readmission to Na-enriched tissues hyperpolarizes the cells up to -100 mV and induces a relaxation, without exerting any effect on the 45Ca efflux rate. The release of Ca from intracellular stores, induced by histamine and FCCP, and its subsequent extrusion through the plasma membrane produce a transient stimulation of the 45Ca efflux, which is not affected by the reduction of the Na gradient. The transient contraction induced by histamine in Ca-free solutions is affected in a different way by different Na substitutes. The results do not fit the Na-Ca exchange hypothesis but are consistent with an effect of the Na gradient on the passive Ca influx.  相似文献   

5.
Control of smooth muscle is vital for health. The major route to contraction is a rise in intracellular [Ca2+], determined by the entry and efflux of Ca2+ and release and re-uptake into the sarcoplasmic reticulum (SR). We review these processes in myometrium, to better understand excitation-contraction coupling and develop strategies for preventing problematic labours. The main mechanism of elevating [Ca2+] is voltage-gated L-type channels, due to pacemaker activity, which can be modulated by agonists. The rise of [Ca2+] produces Ca-calmodulin and activates MLCK. This phosphorylates myosin and force results. Without Ca2+ entry uterine contraction fails. The Na/Ca exchanger (NCX) and plasma membrane Ca-ATPase (PMCA) remove Ca2+, with contributions of 30% and 70% respectively. Studies with PMCA-4 knockout mice show that it contributes to reducing [Ca2+] and relaxation. The SR contributes to relaxation by vectorially releasing Ca2+ to the efflux pathways, and thereby increasing their rates. Agonists binding produces IP3 which can release Ca from the SR but inhibition of SR Ca2+ release increases contractions and Ca2+ transients. It is suggested that SR Ca2+ targets K+ channels on the surface membrane and thereby feedback to inhibit excitability and contraction.  相似文献   

6.
A possible Na/Ca exchange in the follicle cells of Xenopus oocyte   总被引:1,自引:0,他引:1  
In manually dissected Xenopus oocytes, we found that the replacement of external sodium by Tris, choline, or lithium induced a large membrane depolarization and, in voltage clamp, a large inward current. This current appears to be due to activation of a calcium-dependent chloride conductance since it is reversed near ECl, increased by the removal of external chloride, and can be abolished by an injection of BAPTA or by the removal of external Ca2+. Using the Ca-dependent Cl current as a monitor of Ca concentration at the inner surface of the oocyte membrane, we are led to propose that the removal of external Na+ induces an increase in internal Ca2+ via the activation of a Na/Ca exchanger operating in the reverse mode. This interpretation is supported by the finding that the chloride current is diminished in either 3',4'-dichlorobenzamyl (DCB) or high external [Mg2+]o, both of which are known to block the Na/Ca exchanger, whereas it is increased when Li+, rather than Tris or choline, is used as the substitute for Na. The effect of zero [Na+]o was not obtained in oocytes from which follicular cells were removed by enzymatic treatment. This observation led us to test the possibility that the Na/Ca exchanger was present in the follicle cells and not in the oocyte membrane, assuming that entering Ca2+ could pass into the oocyte through gap junctions. Octanol, which blocks gap junctions, or a high [Ca2+]o both considerably reduced the inward current. While octanol probably blocked the gap junctions directly, we propose that the block by high [Ca2+] was due to an excessive rise of [Ca2+]i in the follicular cells. These results, taken together, indirectly suggest the presence of a Na/Ca exchanger in the follicular cells. These results, taken together, indirectly suggest the presence of a Na/Ca exchanger in the follicle cells of Xenopus oocyte which could contribute to the regulation of the internal Ca concentration of the oocyte before fertilization.  相似文献   

7.
The dependence of the 45Ca-efflux from the smooth muscle cells of the arteria carotis of cattle on external sodium and calcium was studied. In the absence of external calcium the replacement of NaCl by sucrose leads to a decreased 45Ca-efflux rate, replacement by LiCl to an increased efflux rate. With regard to the presence of sodium and calcium in the external medium, the 45Ca-efflux rate decreases in the following order: Na + Ca less than less than Na + Ca-free less than Na-free (Na substituted by sucrose) + Ca-free. LiCl considerably stimulates the 45Ca-efflux rate in the presence of external calcium. An inhibition of the Na, K-ATPase activity lasting for more than 20 min leads to a decrease of the 45Ca-efflux rate. The results obtained suggest the existence of a Na-Ca-exchange in the arteria carotis of cattle.  相似文献   

8.
Coronary arterial tissues obtained from mammalian hearts are known to develop spontaneous phasic contractions. The aim of the present study was to investigate the vasodilatory effects of docosahexaenoic acid (DHA) on the rhythmic contractions of isolated human coronary arterial (HCA) preparations obtained from the recipient hearts of patients undergoing cardiac transplantation. Results from 8 hearts show that: (i) most HCA tissues displayed spontaneous rhythmic phasic contractions with a cycle length around 10 min in the absence or presence of PGF2alpha or elevated [K+]0 (20 mM); (ii) the rhythmic activity could be suppressed by a free fatty acid DHA (30 microM); (iii) high [K+]0 (20 and 80 mM) could induce sustained tonic contraction in addition to phasic contractions in HCA tissues, the tonic contraction could be antagonized by L-type Ca(2+) channel blockers or by DHA (depending on [K+]0); (iv) a digitalis substance ouabain also could induce tonic contraction and suppress phasic contraction; (v) in isolated HCA vascular smooth muscle cells, DHA increased the magnitude of outward voltage-gated K+ (IKV) currents and the inwardly rectifying IK1 currents. Enhancement of K+ currents could be related to vasorelaxation induced by DHA in HCA preparations. Further studies on the effects of DHA on various ionic currents and intracellular Ca(2+) transient are needed to clarify the Ca(2+)-dependent and the Ca(2+)-independent actions of DHA in HCA.  相似文献   

9.
The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37 degrees C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7-13 mM K+ than at 4.7 mM (control). For soleus muscle, twitch force potentiation was observed between 7 and 11 mM K+. Time to peak and half-relaxation time were not affected by the increase in extracellular K+ concentration in EDL muscle, whereas both parameters became significantly longer in soleus muscle. Decrease in overshoot and prolongation of the action potential duration observed at 9 and 11 mM K+ were mimicked when muscles were respectively exposed to 25 and 50 nM tetrodotoxin (TTX; used to partially block Na+ channels). Despite similar action potentials, twitch force was not potentiated by TTX. It is therefore suggested that the K+-induced potentiation of the twitch in EDL muscle is not due to a prolongation of the action potential and contraction time, whereas a longer contraction, especially the relaxation phase, may contribute to the potentiation in soleus muscle.  相似文献   

10.
A study has been made with pig red blood cells of the activation of the sodium pump by internal and external cations. Cell Na and K concentrations were altered using a PCMBS cation loading procedure. The procedure was characterised for resultant ionic conditions, maintenance of ATP levels and fragility. The activation of the sodium pump by external K was measured in cells suspended in choline (Na-free) solutions. External Cs was used as a substitute for K and elicited lower rates of pump activity. Both the Vmax and apparent Km for 42K influx and 134Cs influx increased as internal Na concentration was raised (within the non-saturating range). Vmax/apparent Km ratios for cation influx were constant. Raising external Cs concentration exerted a similar influence on pump activation by internal Na: both the maximum pump velocity and the apparent Na-site dissociation constant (K'Na) increased. The results provide evidence for a transmembrane connection between cation binding sites on opposite faces of the membrane and are consistent with a consecutive model for the sodium pump in pig red blood cells.  相似文献   

11.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

12.
We have studied the relation between permeation and recovery from N-type or ball-and-chain inactivation of ShakerB K channels. The channels were expressed in the insect cell line Sf9, by infection with a recombinant baculovirus, and studied under whole cell patch clamp. Recovery from inactivation occurs in two phases. The faster of the two lasts for approximately 200 ms and is followed by a slow phase that may require seconds for completion. The fast phase is enhanced by both permeant ions (K+, Rb+) and by the blocking ion Cs+, whereas the impermeant ions (Na+, Tris+, choline+) are ineffective. The relative potencies are K+ > Rb+ > Cs+ > NH4+ >> Na+ approximately choline+ approximately Tris+. Ion permeation through the channels is not essential for recovery. The results suggest that cations influence the fast phase of recovery by binding in a site with an electrical distance greater than 0.5. Recovery from fast inactivation is voltage-dependent. With Na+, choline+, or Tris+ outside, about 15% of the channels recover in the fast phase (-80 mV), and the other 85% apparently enter a second inactivated state from which recovery is very slow. Recovery in this phase is not influenced by external ions, but is speeded by hyperpolarization.  相似文献   

13.
One beta1 and two alpha (alpha1 and alpha3) isoforms of Na+/K+-ATPase exist in rat uteri. Previous immunocytochemistry studies have suggested that the alpha3 isoform may be involved in calcium regulation indirectly. Estrogens are known to both modulate Na+/K+-ATPase activities in non-uterine tissues and suppress spontaneous uterine contractions in rats. Thus the purpose of this study was to examine the correlation between estrogens-modulated uterine contraction and the expression of Na+/K+-ATPase alpha3 isoform in rats. After 1-, 2-, and 4- day treatments with 17beta-estradiol (E2, 5 microg/ml/kg, s.c., daily), the diameter of uterine horn was measured. The contraction force of uterine strips was measured by standard muscle bath apparatus. The protein abundance and enzyme activity of Na+/K+-ATPase in rat uteri were measured by Western blot analysis and ATPase assay, respectively. One day of E2 decreased both contraction frequency and alpha3-protein expression without the change in uterine diameter, enzyme activity or other isoforms. Two days of E2 reduced contraction frequency, the enzyme activity, as well as alpha3- and beta1- protein abundance but increased alpha1-protein and uterine diameter. Four days of E2 elicited similar effects as two days of E2, but did not affect alpha1-protein abundance. In conclusion, E2 elicits differential effects on isoform expression. After 1-day treatment with 17beta-estradiol, the decrease in the expression of alpha3 and beta1 without a change in Na+/K+-ATPase activity suggests that some isoform other than beta1 exist in rat uteri. The positive correlation between the reduction of alpha3-and the decrease of contraction frequency suggests the involvement of alpha3 isoform in uterine oscillation.  相似文献   

14.
Prostaglandins (PGs) E2 and F2 alpha are strong inducers of uterine contraction by promoting a Ca2+ increase into the cell through specific receptors coupled with the calcium channels. On the contrary, progesterone and 5 beta-reduced progestins promote smooth muscle relaxation by blocking the ion calcium influx. Thus, this study was designed to emphasize the importance of external calcium in the PGs-induced rat uterus contraction. Likewise, also studied was the antagonism and the interaction between PGs and progestins (progesterone and its 5 alpha and 5 beta-reduced derivatives) in the myometrium. Results showed that uterine contraction induced by PGs depends on external calcium, since verapamil or extracellular calcium depletion abolished the PGs effect. Regarding the PGs-progestins antagonism, it was observed that pregnanedione, pregnanolone and epipregnanolone were quite effective for counteracting of PGs-induced contraction. However, progesterone was effective in a middle range, whereas 5 alpha-reduced progestins (allopregnanedione and allopregnanolone) were almost ineffective. It has been concluded that the participation of PGs and progestins in the modulation of uterine contraction might be achieved through the control of calcium influx by opening (PGs) or blocking (progestins) receptor-operated calcium channels.  相似文献   

15.
In guinea pig taenia caeci smooth muscle the muscarinic receptor stimulant carbachol evoked depolarization and contraction, which was followed by hyperpolarization and relaxation on its removal. Both the hyperpolarization and relaxation were inhibited by removal of K+ from the external medium. During Na+-pump blockade (K+-free solution) the depolarizing and contracting actions of carbachol decreased. When the Na+ pump was switched on again by readmission of 5.9 mmol/L K+ to K+-depleted and Na+-enriched preparations, electrogenic hyperpolarization and relaxation developed. During this period carbachol failed to produce depolarization and contraction.  相似文献   

16.
Calcium entry in squid axons during voltage clamp pulses   总被引:1,自引:0,他引:1  
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with sodium ion sensitive, current and voltage electrodes. The axons were usually bathed in a solution of varying Ca2+ concentration ([Ca2+]o) containing 150mM each of Na+, K+ and an inert cation such as Li+, Tris or N-methylglucamine and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic Ca2+ level, [Ca2+]i. The effect of membrane voltage on [Ca2+]i was found to depend on the concentration of internal Na+ ([Na+]i). Voltage clamp hyperpolarizing pulses were found to cause a reduction of [Ca2+]i. For depolarizing pulses a relationship between [Ca2+]i gain and [Na+]i indicates that Ca2+ entry is sigmoid with a half maximal response at 22 mM Na+. This Ca2+ entry is a steep function of [Na+]i suggesting that 4 Na+ ions are required to promote the influx of 1 Ca2+. There was little change in Ca2+ entry with depolarizing pulses when [Ca2+]o is varied from 1 to 10mM, while at 50mM [Ca2+]o calcium entry clearly increases suggesting an alternate pathway from that of Na+/Ca2+ exchange. This entry of Ca2+ at high [Ca2+]o, however, was not blocked by Cs+o. The results obtained lend further support to the notion that Na+/Ca2+ exchange in squid giant axon is sensitive to membrane voltage no matter whether this is applied as a constant change in membrane potential or as an intermittent one.  相似文献   

17.
The acetylcholine reversal potential (Er) of cultured rat myotubes is -3mV. When activated, the receptor is permeable to K+ and Na+, but not to Cl- ions. Measurement of Er in Tris+-substituted, Na-free medium also indicated a permeability to Tris+ ions. Unlike adult frog muscle the magnitude of Er was insensitive to change in external Ca++ (up to 30 mM) or to changes in external pH (between 6.4 and 8.9). The equivalent circuit equation describing the electrical circuit composed of two parallel ionic batteries (EK and ENa) and their respective conductances (gK and gNa), which has been generally useful in describing the Er of adult rat and frog muscle, could also be applied to rat myotubes when Er was measured over a wide range of external Na+ concentrations. The equivalent circuit equation could not be applied to myotubes bathed in media of different external K+ concentrations. In this case, the Er was more closely described by the Goldman constant field equation. Under certain circumstances, it is known that the receptor in adult rat and frog muscle can be induced to reversibly shift from behavior described by the equivalent circuit equation to that described by the Goldman equation. Attempts to similarly manipulate the responses of cultured rat myotubes were unsussessful. These trials included a reduction in temperature (15 degress C), partial alpha-bungarotoxin blodkade, and activation of responses with the cholinergic agonist, decamethonium.  相似文献   

18.
The intestinal muscles of Procambarus clarkii are striated and yet they are specialized to produce slow peristaltic waves of contraction, not unlike those seen in vertebrate visceral smooth muscle. These muscles cannot be tetanized either by repetitive stimulation or by elevated potassium saline. The excitation-contraction (E-C) coupling mechanism was explored and compared with that known in crustacean skeletal muscle. Contraction is dependent on external Ca2+ which triggers the release of intracellular calcium from the sarcoplasmic reticulum (SR) via calcium-induced calcium release (CICR). Whereas contraction force is proportional to [Ca2+]o up to that in normal saline (13.4 mM), higher levels of Ca2+ reduce force. Ryanodine, which blocks calcium release from the SR, abolishes electrically stimulated contractions and CICR. Relaxation is achieved by removal of calcium from the cytosol in at least two ways, first by the re-loading of calcium into the SR by Ca2+-ATPases and second by the movement of calcium out of the cell by extruding it across the sarcolemma via Na+/Ca2+-exchangers. It is hypothesized that the inability of this muscle to show tetanus arises from inactivation of the voltage-gated calcium channels by high calcium. This is supported by the result that caffeine application causes an increase in tonus and size of phasic contractions by circumventing the sarcolemma and dumping SR calcium stores.  相似文献   

19.
Mechanical responses and changes in membrane potential induced by Na removal were investigated in dog tracheal and bronchiolar smooth muscles. In both muscles, reduction of the external Na concentration ([Na]o) to less than 70 mM produced a sustained contracture, dose dependently. The relative amplitude of the Na-free contracture was greater than that induced by excess [K]o in the trachealis. Readmission of 1-10 mM Na, after exposure to Na-free solution, relaxed the contracture evoked by Na removal, and the degree of relaxation was dependent on [Na] readmitted. In the absence of both Na and Ca, some tension remained, and readmission of Ca increased the muscle tone. Even after pretreatment with Ca-free ethylene glycol-bis (beta-aminoethylether)-N,N,N,N'-tetraacetic acid- (0.2 mM) containing solution for 30 min, removal of Na caused some mechanical response in both muscles. D 600 (10(-7) to 10(-4) M), a blocker of voltage-dependent Ca2+ influx, suppressed the response to Na removal, but 10(-4) M D 600 did not completely block the contracture. Na removal depolarized the smooth muscle membrane to a greater extent in the bronchiole than in the trachealis. It was concluded that an increase in Ca permeability across the membrane and inhibition of the Na-Ca exchange mechanism in the absence of Na are responsible for the generation of Na-free contracture in both muscles.  相似文献   

20.
The effect of ryodipine on calcium outflow from tissues, on contraction force, the duration of action potentials and the relaxation phase time-constant in the contraction cycles of myocardial strips was studied using frog heart preparations. It was found that calcium outflow (delta Ca) as a function on ryodipine concentration can be represented as: (formula; see text) A linear correlation exists between Ca2+, contraction blocking and the shortening of the action potential in the presence of various ryodipine concentrations. Ryodipine (10(-5) mol/l) decreased the relaxation time-constant by about 20% as compared to controls. It was concluded that calcium outflow from myocardial tissues in response to ryodipine is due to blockade of calcium entry into the cells and their output through the Na+--Ca2+ exchange system. Frog heart myocardial contractions are essentially under the control of calcium entry through sarcolemmal calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号