首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In utero, at around 23 wk gestation, the progenitor epithelium of distal airway differentiates into type I and type II pneumatocytes. Human fetal lung organ cultures, as early as 12 wk gestation, have the competence to self-differentiate. Distal airway epithelial immunoreactivity to cytokeratins CK 7,8, and 18 decreases with differentiation both in utero and in organ culture, whereas reactivity to epithelial membrane antigen remains constant in both. As distal airways dilate, the mean percentage airspace of fetal lungs in organ culture increases to 58%, equivalent to lung of gestation 26.0±7.3 wk. In organ culture, capillary blood vessels, visualized by vimentin immunoreactivity, remodel and more closely approximate the epithelium but without direct invasion. In utero, at 23 wk gestation, elastin appears as condensation around airways and forms a basis for secondary crests which, by 29 wk gestation, evolve into alveolar septae. In organ culture, no elastin is deposited, no secondary or alveolar crests form, and the lung retains a simple saccular structure. Differentiation of the terminal airway epithelium and mesodermal maturational events to facilitate gas exchange, such as capillary invasion or secondary-alveolar crest formation, are almost synchronous in human lung in utero but clearly dissociate in organ culture.  相似文献   

2.
Polyclonal antisera to the alpha and pi isoenzymes of glutathione S-transferase have been used in immunohistochemical studies to determine the developmental expression of these isoforms in human kidney. Before 35 weeks of gestation, both isoenzymes were expressed by the collecting tubules and developing nephrons. After this time, expression of the alpha set was restricted to the proximal tubule and that of the pi set to the distal and collecting tubules and the loop of Henle.  相似文献   

3.
4.
Distribution of glutathione S-transferase isoenzymes in human ovary.   总被引:2,自引:0,他引:2  
Glutathione S-transferases (GST) are drug-metabolizing and detoxification enzymes involved in the intracellular transport and metabolism of steroid hormones. We studied expression of pi, alpha, mu and microsomal GST by immunohistochemistry in normal human ovaries at different stages of the menstrual cycle and pregnancy and after the menopause. Antibodies were raised in rabbits to purified GST subunits and formalin-fixed, paraffin-embedded sections were studied using the peroxidase-antiperoxidase method. Staining density was graded from very strong to negative. All four isoenzymes were identified in the ovary and their distribution was heterogeneous. The staining pattern of follicles varied with the stage of the menstrual cycle for each isoenzyme. All the ovaries contained abundant GST pi in stroma. GST alpha is closely associated with the glutathione-dependent enzyme delta-5,3-ketosteroid isomerase, which catalyses the conversion of pregnenolone to progesterone and dehydroepiandrosterone to androstenedione. GST alpha was localized to the steroid-producing cells and thus may be useful in studying ovaries in conditions where there are assumed alterations in steroid production.  相似文献   

5.
The development of glutathione S-transferase and glutathione peroxidase activities has been studied in human lung cytosols. Whilst no clear change in glutathione peroxidase activity was identified, expression of the acidic glutathione S-transferase isoenzyme decreased markedly after 15 weeks of gestation so that at birth the level of activity of this isoenzyme was only about 20% of that in samples obtained during the first trimester. Basic glutathione S-transferase isoenzymes were weakly expressed during development and usually comprised less than 10% of cytosolic activity. Ion-exchange studies identified several basic isoenzymes that may correspond to the alpha, beta, gamma, delta and epsilon set previously identified in liver. Weak expression of apparently near-neutral isoenzymes was also detected; they were detected in only a few cytosols.  相似文献   

6.
Addition of PGE2, but not PGF2 alpha, to fetal lung organ cultures accelerates the process of self-differentiation with increased dilatation of terminal airsacs and differentiation of the epithelial lining. Indomethacin reduces the endogenous production by organ cultures of PGE2, PGF2 alpha, 13,14-dihydro-15-keto-PGE2, and 13,14-dihydro-15-keto-PGF2 alpha and retards the process of self-differentiation. Prolonged exposure of cultures to indomethacin results in cell necrosis. Indomethacin inhibition of self-differentiation can be reversed and accelerated by the addition of PGE2. Addition of PGF2 alpha in the presence of indomethacin prevents indomethacin-associated cell necrosis but does not accelerate dilatation or differentiation beyond that of cultures in sera-free media without additions. We propose that the endogenous production of PGE2 is a key process in the mechanism of self-differentiation of human fetal lung in organ culture.  相似文献   

7.
In this paper, we provide direct evidence that glutathione S-transferase π (GSTπ) detoxifies cisplatin (CDDP). We used human colonic cancer HCT8 cells sensitive and resistant to CDDP, the level of cisplatin-glutathione adduct (DDP-GSH) being higher in the resistant cells. There was an overexpression of GSTπ mRNA in these CDDP-resistant cells. Incubation of the cells with CDDP resulted in the formation of DDP-GSH dependent on the CDDP concentration and the incubation time. The formation of DDP-GSH was abolished when the cells were pre-treated with ethacrynic acid or ketoprofen, inhibitors of GSTπ. Purified GSTπ also catalyzed the formation of DDP-GSH in vitro, with an apparent Km of 0.23 mM for CDDP and an apparent Vmax of 4.9 nmol/min/mg protein. The increase in DDP-GSH produced by GSTπ was linear with incubation time up to 3 h and optimal of pH 7.4. A GSTπ transfectant cell line was constructed in HCT8 cells using a pcDNA3.1 (-)/Myc-His B with an expression vector containing cDNA for GSTπ. Transfection of GSTπ cDNA into HCT8 cells resulted in an increase in the expression of GSTπ by 1.4-fold in parallel with an augmentation of the formation of DDP-GSH. These results suggest that GSTπ plays a role in the formation of DDP-GSH and the acquisition of resistance to CDDP in cancer cells.  相似文献   

8.
The primary structure of glutathione S-transferase (GST) pi from a single human placenta was determined. The structure was established by chemical characterization of tryptic and cyanogen bromide peptides as well as automated sequence analysis of the intact enzyme. The structural analysis indicated that the protein is comprised of 209 amino acid residues and gave no evidence of post-translational modifications. The amino acid sequence differed from that of the deduced amino acid sequence determined by nucleotide sequence analysis of a cDNA clone (Kano, T., Sakai, M., and Muramatsu, M., 1987, Cancer Res. 47, 5626-5630) at position 104 which contained both valine and isoleucine whereas the deduced sequence from nucleotide sequence analysis identified only isoleucine at this position. These results demonstrated that in the one individual placenta studied at least two GST pi genes are coexpressed, probably as a result of allelomorphism. Computer assisted consensus sequence evaluation identified a hydrophobic region in GST pi (residues 155-181) that was predicted to be either a buried transmembrane helical region or a signal sequence region. The significance of this hydrophobic region was interpreted in relation to the mode of action of the enzyme especially in regard to the potential involvement of a histidine in the active site mechanism. A comparison of the chemical similarity of five known human GST complete enzyme structures, one of pi, one of mu, two of alpha, and one microsomal, gave evidence that all five enzymes have evolved by a divergent evolutionary process after gene duplication, with the microsomal enzyme representing the most divergent form.  相似文献   

9.
The developmental expression of the basic, near-neutral and acidic isoenzymes of glutathione S-transferase (RX:glutathione R-transferase, EC 2.5.1.18) has been studied in heart and diaphragm. Neither these enzymes nor the putative muscle-specific GST4 isoenzyme demonstrated any developmental trends in expression. In vitro hybridisation and SDS-discontinuous polyacrylamide gel electrophoresis were used to show that the GST4 isoenzyme is a homodimer composed of monomers that have a slightly larger molecular weight than the near-neutral isoenzyme. The sensitivity of GST4 to inhibitors also appeared similar to that of the GST1 2 isoenzyme. Immunodiffusion and immunoblotting techniques were used to show that the acidic enzyme in muscle is immunologically identical to that in other tissues.  相似文献   

10.
11.
Glutathione S-transferase pi (GST pi) is an enzyme involved in cell protection against toxic electrophiles and products of oxidative stress. GST pi expression was studied in transgenic mice hybrids (B6-C3H) with symptoms of neurodegeneration harboring SOD1G93A (SOD1/+), Dync1h1 (Cra1/+) and double (Cra1/SOD1) mutations, at presymptomatic and symptomatic stages (age 70, 140, 365 days) using RT-PCR and Western blotting. The main changes in GST pi expression were observed in mice with the SODG93A mutation. In SOD1/+ and Cra1/SOD1 transgenics, with the exception of cerebellum, the changes in GST pi-mRNA accompanied those in GST pi protein. In brain cortex of both groups the expression was unchanged at the presymptomatic (age 70 days) but was lower at the symptomatic stage (age 140 days) and at both stages in hippocampus and spinal cord of SOD1/+ but not of Cra1/SOD1 mice compared to age-matched wild-type controls. In cerebellum of the presymptomatic and the symptomatic SOD1/+ mice and presymptomatic Cra1/SOD1 mice, the GST pi-mRNA was drastically elevated but the protein level remained unchanged. In Cra1/+ transgenics there were no changes in GST pi expression in any CNS region both on the mRNA and on the protein level. It can be concluded that the SOD1G93A but not the Dync1h1 mutation significantly decreases detoxification efficiency of GST pi in CNS, however the Dync1h1 mutation reduces the effects caused by the SOD1G93A mutation. Despite similarities in neurological symptoms, the differences in GST pi expression between SOD1/+ and Cra1/+ transgenics indicate a distinct pathogenic entity of these two conditions.  相似文献   

12.
A plasmid, termed pTacGST2, which contains the complete coding sequence of a GST2 (glutathione S-transferase 2) subunit and permits the expression of the protein in Escherichia coli was constructed. The expressed protein had the same subunit Mr as the enzyme from normal human liver and retained its catalytic function with both GST and glutathione peroxidase activity. Antiserum raised against the bacterially synthesized protein cross-reacted with all the basic GST isoenzymes in human liver. The electrophoretic mobility in agarose of the bacterially expressed isoenzyme suggested that its pI is identical with that of the cationic isoenzyme from human liver previously termed GST2 type 1. The available evidence suggests that the three common cationic isoenzymes found in human liver are the products of two very similar gene loci.  相似文献   

13.
(1) The tissue-specific expression of various glutathione-dependent enzymes, including glutathione S-transferase (GST), glutathione peroxidase and glyoxalase I, has been studied in bovine adrenals, brain, heart, kidney, liver, lung and spleen. Of the organs studied, liver was found to possess the greatest GST and glyoxalase I activity, and spleen the greatest glutathione peroxidase activity. The adrenals contained large amounts of these glutathione-dependent enzymes, but significant differences were observed between the cortex and medulla. (2) GST and glyoxalase I activity were isolated by S-hexylglutathione affinity chromatography. Glyoxalase I was found in all the organs examined, but GST exhibited marked tissue-specific expression. (3) The alpha, mu and pi classes of GST (i.e., those that comprise respectively Ya/Yc, Yb/Yn and Yf subunits) were all identified in bovine tissues. However, the Ya and Yc subunits of the alpha class GST were not co-ordinately regulated nor were the Yb and Yn subunits of the mu class GST. (4) Bovine Ya subunits (25.5-25.7 kDa) were detected in the adrenal, liver and kidney, but not in brain, heart, lung or spleen. The Yc subunit (26.4 kDa) was expressed in all those organs which expressed the Ya subunit, but was also found in lung. The mu class Yb (27.0 kDa) and Yn (26.1 kDa) subunits were present in all organs; however, brain, lung and spleen contained significantly more Yn than Yb type subunits. The pi class Yf subunit (24.8 kDa) was detected in large amounts in the adrenals, brain, heart, lung and spleen, but not in kidney or liver. (5) Gradient affinity elution of S-hexylglutathione-Sepharose showed that the bovine proteins that bind to this matrix elute in the order Ya/Yc, Yf, Yb/Yn and glyoxalase I. (6) In conclusion, the present investigation has shown that bovine GST are much more complex than previously supposed; Asaoka (J. Biochem. 95 (1984) 685-696) reported the purification of mu class GST but neither alpha nor pi class GST were isolated.  相似文献   

14.
A previously uncharacterized glutathione S-transferase isoenzyme which is absent from normal adult rat livers has been isolated from fetal rat livers. The enzyme was purified using a combination of affinity chromatography, CM-cellulose column chromatography and chromatofocusing. It is composed of two non-identical subunits, namely, subunit Yc (Mr 28,000) and a subunit (Mr 25,500) recently reported by us to be uniquely present in fetal rat livers and which we now refer to as subunit 'Yfetus'. The enzyme which we term glutathione S-transferase YcYfetus has an isoelectric point of approx. 8.65 and has glutathione S-transferase activity towards a number of substrates. The most significant property of the fetal isozyme is its high glutathione peroxidase activity towards the model substrate cumene hydroperoxide. We suggest that this isozyme serves a specific function in protecting fetuses against the possible teratogenic effects of organic peroxides.  相似文献   

15.
Site-directed substitution mutations were introduced into a cDNA expression vector (pUC120 pi) that encoded a human glutathione S-transferase pi isozyme to non-conservatively replace four residues (Tyr7, Arg13, Gln62 and Asp96). Our earlier X-ray crystallographic analysis implicated these residues in binding and/or chemically activating the substrate glutathione. Each substitution mutation decreased the specific activity of the enzyme to less than 2% of the wild-type. Glutathione-binding was also reduced; however, the Tyr7----Phe mutant still retained 27% of the wild-type capacity to bind glutathione, underlining the primary role that this residue is likely to play in chemically activating the glutathione molecule during catalysis.  相似文献   

16.
Corticosteroid binding by fetal rat and rabbit lung in organ culture   总被引:1,自引:0,他引:1  
To further characterize glucocorticoid action in fetal lung cells, we investigated corticosteroid metabolism and binding in explants of fetal rat and rabbit lung. Cortisone (E) was concerted to cortisol (F) and bound by receptor with a time course only somewhat slower than for F. Production of F (0.243 pmol/min/mg DNA) was the same in male and female rabbits and was not affected by prior exposure to glucocorticoid in utero or in culture. The t 1/2 for dissociation of nuclear-bound [3H]F was 84 min on changing the culture medium and 21 min on addition of excess non-labeled dexamethasone. Dissociation of [3H]dexamethasone was approx 5-fold slower by both procedures. The KD for nuclear binding of dexamethasone, F, E, and corticosterone in rabbit lung were 0.7, 7.3, 6.8 and 70.6 nM, respectively. In rat lung, the KD for dexamethasone was 6.8 nM. The concentrations of dexamethasone and F required for half-maximal stimulation of phosphatidylcholine synthesis were similar to the KD values. Dexamethasone binding capacity (sites/mg DNA) increased with age in both rat (+103% increase from day 16 to 22) and rabbit (+47% between day 23 and 30). Receptor concentration was the same in both sexes, and there were no developmental changes in non-specific binding, nuclear:cytoplasmic distribution, or KD. In 27-day rabbit fetuses, the rate of choline incorporation was higher in lungs with greater binding capacity. We conclude that (1) E is rapidly converted to F in rabbit lung to become an active glucocorticoid, whereas corticosterone probably has little physiologic activity, (2) there is a species difference in the affinity of dexamethasone binding which is reflected in responsiveness (3) there is no difference between sexes in E conversion, receptor capacity, or phosphatidylcholine synthesis, and (4) the concentration of binding sites per lung cell increases during fetal development. We suggest that developmental increases in both F production and receptor may be important factors in the expression of endogenous glucocorticoid effects.  相似文献   

17.
The three-dimensional structure of human class pi glutathione S-transferase from placenta (hGSTP1-1), a homodimeric enzyme, has been solved by Patterson search methods and refined at 2.8 A resolution to a final crystallographic R-factor of 19.6% (8.0 to 2.8 A resolution). Subunit folding topology, subunit overall structure and subunit association closely resembles the structure of porcine class pi glutathione S-transferase. The binding site of a competitive inhibitor, S-hexylglutathione, is analyzed and the locations of the binding regions for glutathione (G-site) and electrophilic substrates (H-site) are determined. The specific interactions between protein and the inhibitor's glutathione peptide are the same as those observed between glutathione sulfonate and the porcine isozyme. The H-site is located adjacent to the G-site, with the hexyl moiety lying above a segment (residues 8 to 10) connecting strand beta 1 and helix alpha A where it is in hydrophobic contact with Tyr7, Phe8, Val10, Val35 and Tyr106. Catalytic models are discussed on the basis of the molecular structure.  相似文献   

18.
Summary The numerous human glutathione transferases may be divided into three classes, mu, alpha and pi. Using a panel of human-rodent somatic cell hybrids and DNA probes specific for each of the three classes, we have mapped a class mu gene to chromosome 3, a class alpha gene to chromosome 6 and a class pi gene to chromosome 11. The two latter assignments confirm earlier reports, whereas the assignment of the class mu gene represents a new addition to the human gene map.  相似文献   

19.
During the course of differentiation in the thymus, precursor T cells are negatively selected by a self-tolerance mechanism or positively selected to acquire restriction specificity to self major histocompatibility complexes. We investigated the process of T cell differentiation and those selections using a fetal thymus organ culture with or without cyclosporine A. The agent blocked the maturation step from CD4+8+ double positive cells to mature CD4-8+ or CD4+8- single positive cells. On the other hand, the agent did not inhibit the development of CD3+4-8- T cell receptor (TCR)alpha beta- cells, which were supposed to be T cells bearing gamma delta-TCR chains. These results suggest that the development of thymocytes bearing alpha beta- or gamma delta-TCR chains differ in requirement for thymocyte-stromal cell interaction.  相似文献   

20.
The morphology of human embryonic and fetal skin growth in organ culture at the air-medium interface was examined, and the labeling indices of the epidermal cells in such cultures were determined. The two-layered epidermis of embryonic specimens increased to five or six cell layers after 21 days in culture, and the periderm in such cultures changed from a flat cell type to one with many blebs. The organelles in the epidermal cells remained unchanged. Fetal epidermis, however, differentiated when grown in this organ culture system from three layers (basal, intermediate, and periderm) to an adult-type epidermis with basal, spinous, granular, and cornified cell layers. Keratohyalin granules, lamellar granules, and bundles of keratin filaments, organelles associated with epidermal cell differentiation, were observed in the suprabasal cells of such cultures. The periderm in these fetal cultures formed blebs early but was sloughed with the stratum corneum in older cultures. The rate of differentiation of the fetal epidermis in organ culture was related to the initial age of the specimen cultured, with the older specimens differentiating at a faster rate than the younger specimens. Labeling indices (LIs) of embryonic and fetal epidermis and periderm were determined. The LI for embryonic basal cells was 8.5% and for periderm was 8%. The fetal LIs were 7% for basal cells, 1% for intermediate cells, and 3% for periderm. The ability to maintain viable pieces of skin in organ culture affords a model for studying normal and abnormal human epidermal differentiation from fetal biopsies and for investigating proliferative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号