首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Prolonged fetal tracheal occlusion (TO) accelerates lung growth but leads to loss of alveolar epithelial type II (AE2) cells. In contrast, temporary TO leads to recovery of AE2 cells and their ability to produce surfactant. The aim of this study was to determine the effects of temporary TO in fetal sheep with lung hypoplasia on postnatal lung function, structure, and surfactant protein mRNA expression. Diaphragmatic hernia (DH) was created in 22 fetal sheep at 65 days of gestation. TO was performed between 110 days of gestation and full term (DH/TO, n = 7) and between 110 and 130 days of gestation (DH/TO+R, n = 6). Sham-operated fetuses (n = 11) served as controls. Lambs were delivered at approximately 139 days of gestation, and blood gas tensions were monitored over a 2-h resuscitation period. Temporary TO increased growth of the hypoplastic lung and restored surfactant protein mRNA expression and AE2 cell density but did not improve respiratory function above that of animals that underwent prolonged TO; DH/TO and DH/TO+R lambs were hypoxic and hypercapnic compared with Sham animals. Lung compliance remained low in DH/TO+R lambs, most likely as a consequence of the persistent increase in alveolar wall thickness in these animals.  相似文献   

3.
The teratogen nitrofen produces a congenital diaphragmatic hernia (CDH) and pulmonary hypoplasia in rodent fetuses that closely parallel observations made in humans. We hypothesized that these changes may be due to primary pulmonary hypoplasia and not herniation of the abdominal contents. Timed-pregnant rats were given nitrofen on day 9, and fetuses were harvested on days 13 through 21. Initial evagination of lung buds on gestational day 11 was not delayed in nitrofen-treated fetuses. On gestational day 13, however, there was a significant decrease in the number of terminal end buds in the lungs of nitrofen-exposed fetuses vs. controls. Thymidine-labeled lung epithelial and mesenchymal cells were significantly decreased in nitrofen-treated lungs. Lungs from nitrofen-treated fetuses exhibited wide septae with disorganized, compacted tissue, particularly around the air spaces. Expression of surfactant protein B and C mRNAs was significantly decreased in the nitrofen litters. In situ hybridization of fetal lung tissue at all gestational ages showed no difference in the expression of vascular endothelial growth factor, Flk-1, or Flt-1 mRNAs. Because closure of the diaphragm is completed on gestational day 16 in the rat, our results suggest that lung hypoplasia in this model of CDH is due at least in part to a primary effect of nitrofen on the developing lung.  相似文献   

4.
Fetal tracheal occlusion (TO) reverses lung hypoplasia by inducing rapid lung growth. Although increases in lung size accompanied by increased numbers of alveoli and capillaries have been reported, effects of TO on lung development have not been formally assessed. In the present study, the objective was to verify our prediction that the main effect of TO would be to accelerate fetal lung development. We have developed and characterized a new fetal mouse model of TO to best realize this goal. At embryonic day 16.5, pregnant CD1 mice were operated under general anesthesia. One fetus per dam was selected to undergo surgical TO with a surgical clip or a sham operation. The fetuses were delivered 24 or 36 h postsurgery. The maturation of lung parenchyma, evaluated by counting the generations of alveolar saccules from the terminal bronchiole to the pleura, was significantly accelerated in the TO group with a complexity of the gas exchange region comparable with postnatal days 1 and 3 after 24 or 36 h of TO. Cellular proliferation and apoptosis peaks, assessed by immunohistochemistry directed against PCNA and the active form of caspase-3, were significantly increased 24 h after surgery in the TO group compared with the sham group. However, in situ hybridization showed no significant difference in the density of type II pneumocytes expressing surfactant protein C mRNA. Our results show that brief TO during late gestation in fetal mice induces accelerated lung development with minimal effects on surfactant protein C mRNA expression.  相似文献   

5.
We drained the amniotic fluid surrounding guinea pig fetuses between days 45 and 65 of gestation (term is 67 days). The fetuses were delivered by Cesarean section and the impact of prolonged oligohydramnios on lung growth, maturation and postnatal ventilatory pattern was measured. Untouched littermate fetuses served as controls. Neither fetal body, liver nor brain weights were significantly affected by the experimental situation. When expressed in percent of control values, lung weight (63%), lung/body weight ratio (70%), lung volume (67%), total lung DNA content (63%) and lung DNA per gram of fetal weight (71%) were all significantly less following amniotic fluid drainage, confirming the diagnosis of lung hypoplasia. Disaturated phosphatidylcholine content per gram of lung tissue and total lung glycogen content were not affected by the procedure, indicating that the maturity of the hypoplastic lungs was not delayed. When measured 4 to 6 hours after birth, tidal volume was significantly less (62%) and respiratory frequency was significantly more (137%); however, minute ventilation per unit of body weight was not significantly changed. This animal model of sublethal lung hypoplasia could become useful to study the potential for, and the kinetics of, postnatal catch-up lung growth about which little is known.  相似文献   

6.
Prenatal airway smooth muscle (ASM) peristalsis appears coupled to lung growth. Moreover, ASM progenitors produce fibroblast growth factor-10 (FGF-10) for lung morphogenesis. Congenital diaphragmatic hernia (CDH) is associated with lung hypoplasia, FGF-10 deficiency, and postnatal ASM dysfunction. We hypothesized ASM dysfunction emerges in tandem with, and may contribute toward, the primordial lung hypoplasia that precedes experimental CDH. Spatial origin and frequency of ASM peristaltic waves were measured in normal and hypoplastic rat lungs cultured from day 13.5 of gestation (lung hypoplasia was generated by nitrofen dosing of pregnant dams). Longitudinal lung growth was assayed by bud counts and tracing photomicrographs of cultures. Coupling of lung growth and peristalsis was tested by stimulation studies using serum, FGF-10, or nicotine and inhibition studies with nifedipine or U0126 (MEK1/2 inhibitor). In normal lung, ASM peristalsis is developmentally regulated: proximal ASM becomes quiescent (while retaining capacity for cholinergic-stimulated peristalsis). However, in hypoplastic lung, spontaneous proximal ASM activity persists. FGF-10 corrects this aberrant ASM activity in tandem with improved growth. Stimulation and inhibition studies showed that, unlike normal lung, changes in growth or peristalsis are not consistently accompanied by parallel modulation of the other. ASM peristalsis undergoes FGF-10-regulated spatiotemporal development coupled to lung growth: this process is disrupted early in lung hypoplasia. ASM dysfunction emerges in tandem with and may therefore contribute toward lung hypoplasia in CDH.  相似文献   

7.
The effects of hydrocortisone on lung structure in fetal lambs   总被引:1,自引:0,他引:1  
The effect of cortisol infusion on fetal lung development was studied in lambs. Changes were compared with those of control groups of saline-infused fetuses of the same age (day 132) and normal late gestation fetuses (142 +/- 4.6 days). Cortisol was infused into five fetal lambs at 129 days of gestation at a rate of 17.0 mg/day. Four fetuses were delivered by hysterotomy at the onset of labour-like uterine activity (58 +/- 3 h). In cortisol-infused fetuses the concentration of cortisol in fetal plasma and tracheal fluid rose to levels similar to those in normal fetuses during the last week of gestation. Progesterone concentration in maternal plasma declined at about 48 h after the start of treatment. Cortisol-infused lambs showed increases in fixed lung volume, specific lung volume, absolute volume of both parenchyma and non-parenchyma and the proportion of the parenchyma which was potential airspace and a decrease in the proportion of parenchyma. For cortisol-infused lambs Type II cell size and the abundance of lamellar bodies, and the volume fraction of cell occupied by the nucleus were similar to the 142 day group, whereas Golgi apparatus and RER were closer to age matched saline-infused (day 132) controls. Glycogen content was midway between the two control groups. We conclude that infusion of cortisol for about 60 h at physiological levels, beginning at 0.85 of gestation, accelerates many, but not all aspects of pulmonary parenchymal maturation, expressed in terms either of morphogenesis of the gas exchange area or differentiation of Type II alveolar cells.  相似文献   

8.
BACKGROUND : Pulmonary hypoplasia (PH) is the main cause of mortality in newborns with congenital diaphragmatic hernia (CDH). Prenatal administration of retinoic acid (RA) stimulates alveologenesis in the nitrofen‐induced pulmonary hypoplasia. Insulin‐like growth factor receptors (IGFRs) play a crucial role in alveologenesis during lung development. We recently demonstrated that IGFRs were downregulated in later stages of lung development in the nitrofen CDH model. Several studies suggest the ability of RA to regulate insulin‐like growth factor signaling. We hypothesized that IGFRs pulmonary gene expression is upregulated after the administration of RA in the nitrofen‐induced CDH model. METHODS : Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on days D18, D19, and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH, and CDH + RA group. IGFRs gene and protein expression were determined using RT‐PCR and immunohistochemistry. RESULTS : mRNA expression levels of IGFRs were significantly increased in control + RA and CDH + RA compared with CDH group. Immunoreactivity of IGFRs was markedly increased in control + RA and CDH + RA compared with CDH lungs. CONCLUSIONS : Upregulation of pulmonary gene and protein expression of IGFRs after prenatal RA treatment in the nitrofen model suggests that RA may promote lung growth by stimulating IGFRs mediated alveologenesis. Birth Defects Res (Part B) 92:148–151, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
In order to clarify the pathological outcome of congenital diaphragmatic hernia (CDH), we devised an animal model of CDH by administration of 2,4-dichlorophenyl-p-nitrophenyl ether (nitrofen) to pregnant rats, and determined the level and distribution of lung surfactant using the monoclonal antibody toward sphingomyelin and disaturated phosphatidylcholine (disat-PC). In control rats, the concentration of disat-PC was found to increase greatly from 16 to 18 days of gestation. Intragastric administration of nitrofen to pregnant rats at day 9 of gestation resulted in CDH in 42.7% of fetuses delivered after 20 days of gestation. In nitrofen-treated fetuses, the concentration of disat-PC in the lungs was lower than those in control fetuses, and surfactant apoprotein SP-A was similarly reduced in nitrofen-treated fetuses. However, the concentration of disat-PC in nitrofen-treated fetuses was higher than that in control fetuses at 18 days of gestation, indicating a synthetic potential of surfactant in nitrofen-treated fetuses comparable to that at the late stage of normal gestation. Immunohistochemical study with the antibody revealed that surfactant phospholipid was mainly in the form of intracellular granules in nitrofen-treated fetuses, probably causing the hypoplastic lungs and then CDH, in contrast to the uniform distribution on the pulmonary alveolar surface in control fetuses.  相似文献   

10.
To study the effect of oligohydramnios on lung growth and biochemical lung development in fetal rabbits, amniotic fluid was drained through a tube inserted into the maternal peritoneal cavity on the 23 day of gestation. Littermate fetuses without an amniotic shunt were used as controls. The fetuses were delivered abdominally on the 28 day of gestation. In a total of 8 pregnant does, 17 fetuses underwent amniotic shunting and 22 fetuses were used as controls. The amniotic shunt produced a significant reduction in the amniotic fluid volume. There were no differences in the wet weights of the fetal body, liver or brain between the two groups. However, the amniotic shunt significantly decreased the wet weight of the fetal lung, fetal lung wet weight/body weight ratio, and protein concentration per lung as compared to the control fetuses. In the fetal liver and brain tissues, no changes were found in the concentrations of total phospholipids, phosphatidylcholine (PC) or disaturated phosphatidylcholine (DSPC, the main component of lung surfactant) per g of wet tissue and per mg of protein. However, the lungs of the fetuses with amniotic shunts contained significantly more PC and DSPC, and the L/S ratio was higher than in the control fetuses. These results suggest that the oligohydramnios produced by an amniotic shunt causes pulmonary hypoplasia, but raises the pulmonary surfactant content of fetal rabbit lung.  相似文献   

11.
Congenital diaphragmatic hernia (CDH) may be an ideal candidate disease for in utero gene therapy as disrupted fetal lung growth plays a significant role in disease outcome. We previously demonstrated that transient in utero overexpression of CFTR during fetal development resulted in lung epithelial proliferation and differentiation. We hypothesized that gene therapy with CFTR would improve the pulmonary hypoplasia associated with congenital diaphragmatic hernia (CDH). CDH was induced by the herbicide 2,4-dichlorophenyl-4-nitrophyl ether (nitrofen) following maternal ingestion at either 10 or 13 days gestation. In utero gene transfer of the CFTR gene was subsequently performed at 16 days gestation. Examination of the fetuses at 22 days gestation revealed little improvement in the CFTR-treated lungs following induction of hernias with nitrofen at 10 days gestation. However, the CFTR gene treatment significantly improved internal surface area, saccular density, overall saccular number, and amount of saccular air space in the lungs that were treated with nitrofen at 13 days gestation. RT-PCR demonstrated that gene transfer occurred following treatment at 13 days gestation but not in the lungs treated with nitrofen at 10 days gestation, despite gene transfer at the same gestational age (16 days) in both groups. As disruption of lung development correlates with the gestational stage at which nitrofen exposure occurs, these results confirmed previous findings that in utero gene transfer efficiency depends on the stage of lung development. Lung development may be significantly delayed in human CDH to allow for successful gene transfer later in gestation, providing a substantial therapeutic window.  相似文献   

12.
Antenatal stimulation of lung growth is a reasonable approach to treat congenital diaphragmatic hernia (CDH), a disease characterized by pulmonary hypoplasia and hypertension. Several evidences from the literature demonstrated a possible involvement of renin-angiotensin system (RAS) during fetal lung development. Thus, the expression pattern of renin, angiotensin-converting enzyme, angiotensinogen, type 1 (AT1) and type 2 (AT2) receptors of angiotensin II (ANGII) was assessed by immunohisto-chemistry throughout gestation, whereas the function of RAS in the fetal lung was evaluated using fetal rat lung explants. These were morphometrically analyzed and intracellular pathway alterations assessed by Western blot. In nitrofen-induced CDH model, pregnant rats were treated with saline or PD-123319. In pups, lung growth, protein/DNA ratio, radial saccular count, epithelial differentiation and lung maturation, vascular morphometry, right ventricular hypertrophy and overload molecular markers, gasometry and survival time were evaluated. Results demonstrated that all RAS components were constitutively expressed in the lung during gestation and that ANGII had a stimulatory effect on lung branching, mediated by AT1 receptor, through p44/42 and Akt phosphorylation. This stimulatory effect on lung growth was mimicked by AT2-antagonist (PD-123319) treatment. In vivo antenatal PD-123319 treatment increased lung growth, ameliorated indirect parameters of pulmonary hypertension, improved lung function and survival time in nonventilated CDH pups, without maternal or fetal deleterious effects. Therefore, this study demonstrated a local and physiologically active RAS during lung morphogenesis. Moreover, selective inhibition of AT2 receptor is presented as a putative antenatal therapy for CDH.  相似文献   

13.
Pulmonary hypoplasia is increasing as a cause of neonatal death. To understand the pathophysiology of pulmonary hypoplasia, the physiology of fetal lung growth must first be understood. Lung fluid production and fetal breathing are primary factors regulating lung growth. Interruption of pulmonary arterial flow also decreases fetal lung growth. To define the relationship of pulmonary arterial flow to other factors known to be important for fetal lung growth, breathing and lung fluid production were measured after postductal main pulmonary artery (MPA) ligation in fetal sheep. Surgical preparation at 107-116 d gestation included placement of vascular catheters and a tracheal catheter connected to an intrauterine collection bag for lung fluid. Five fetuses served as monitored controls (catheters only), 3 as sham operated controls (catheters and thoracotomy), and 7 had MPA ligation. MPA ligation significantly decreased lung weights at 131-140 d; mean dry weight (g): MPA ligation--6.7, sham--23.4, monitored--22.3. Mean rates of lung fluid production (mL/h) were also decreased (d gestation): 116-122 d: MPA ligation--2.2, sham--9.1, monitored--6.8; 123-129 d: MPA ligation--2.1, sham--9.1, monitored--6.2; 130-136 d: MPA ligation--1.5, sham--12.4, monitored--7.7. There were no differences between MPA ligated, sham, and monitored fetuses in the incidence or intensity of fetal breathing movements. Decreased lung fluid production after main pulmonary artery ligation is most likely due to decreased secretion of lung fluid. Pulmonary arterial flow in other models of pulmonary hypoplasia which decrease lung fluid production (i.e., oligohydramnios) should also be examined.  相似文献   

14.
15.
Tracheal obstruction (TO) stimulates growth of hypoplastic lungs in the fetus, but there is little knowledge of subsequent postnatal respiratory function. We have determined the effectiveness of TO in fetal sheep with existing lung hypoplasia in restoring postnatal respiratory function. Lung hypoplasia was induced by lung liquid drainage from 112 days of gestation to term ( approximately 148 days). We used an untreated group (ULH), a treated group (TLH) in which the trachea was obstructed for 10 days, and a control group. ULH lambs died within 4 h of birth. TLH lambs were hypoxic for the first week and were hypercapic at 2 days. Pulmonary diffusing capacity, gas volumes, and respiratory compliances were not different between control and TLH lambs. Minute ventilation was not different between the two groups; however, tidal volumes were lower and respiratory frequencies were higher in TLH lambs than in controls for 2 wk after birth. We conclude that 10 days of TO in the presence of initial lung hypoplasia prevents death at birth and returns most aspects of pulmonary function to normal by 1-2 wk after birth.  相似文献   

16.
A comparative study of adrenal morphology between normal fetuses and those with anencephaly or congenital adrenal hyperplasia (CAH) was performed in order to examine the hypothesis that fetal adrenal mass and structure are adrenocorticotrophin (ACTH)-dependent throughout gestation. Combined adrenal weight in 102 normal fetuses was used to establish a reference range for the gestational ages of 15-27 weeks. During this period, mean adrenal weight showed a 6-fold linear increase. In 38 anencephalic fetuses of similar gestation age, adrenal weight was below the normal range and did not show a rise. Three fetuses with CAH (18, 22 and 30 weeks gestation) had adrenal weights considerably above the normal range. Adrenal cortical thickness was significantly increased in CAH fetuses, largely as a consequence of cell hypertrophy, whereas decreased cortical thickness in the anencephalic group represented cellular hypoplasia. Conspicuous secretory granules in the cytoplasm was the electron-micrographic feature of the adrenal gland in the 22-week fetus with CAH. These observations are consistent with close dependency of fetal adrenal growth and development upon fetal pituitary function from an early age, mediated primarily through ACTH.  相似文献   

17.
Pregnancy is associated with a significant increase in uteroplacental blood flow (UBF), which is responsible for delivering adequate nutrients and oxygen for fetal and placental growth. The present study was designed to determine the effects of vascular insufficiency on fetal and placental growth. Thirty-nine late-term pregnant ewes were instrumented to investigate the effects of chronic UBF reduction. Animals were split into three groups based on uterine blood flow, and all animals were killed on gestational day 138. UBF, which began at 851 +/- 74 ml/min (n = 39), increased in controls (C) to 1,409 +/- 98 ml/min (day 138 of gestation) and in the moderately restricted (R(M)) group to 986 +/- 69 ml/min. In the severely restricted (R(S)) group, UBF was only 779 +/- 79 ml/min on gestational day 138. This reduction in UBF significantly affected fetal body weight with R(M) fetuses weighing 3,685 +/- 178 g and R(S) fetuses weighing 2,920 +/- 164 g compared with C fetal weights of 4,318 +/- 208 g. Fetal brain weight was not affected, whereas ponderal index was significantly reduced in R(M) (2.94 +/- 0.09) and R(S) fetuses (2.49 +/- 0.08) compared with the value of the C fetuses (3.31 +/- 0.08). Placental weight was also significantly reduced in the R(M) group, being 302 +/- 24 g, whereas the R(S) group placenta weighed 274 +/- 61 g compared with the C values of 414 +/- 57 g. Fetal heart, liver, lung, and thymus were all significantly smaller in the R(S) group. Thus the present study shows a clear relationship between the level of UBF and both fetal and placental size. Furthermore, the observation that fetal brain weight was not affected, whereas fetal body weight was significantly reduced suggests that this experimental preparation may provide a useful model in which to study asymmetric fetal growth restriction.  相似文献   

18.
We hypothesized that congenital diaphragmatic hernia (CDH) may decrease distal air space fluid absorption due to immaturity of alveolar epithelial cells from a loss of the normal epithelial Na+ transport, as assessed by amiloride and epithelial Na+ channel (ENaC) and Na-K-ATPase expression, as well as failure to respond to endogenous epinephrine as assessed by propranolol. Timed-pregnant dams were gavage fed 100 mg of nitrofen at 9.5-day gestation to induce CDH in the fetuses, and distal air space fluid absorption experiments were carried out on 22-day gestation (term) fetuses. Controls were nitrofen-exposed fetuses without CDH. Absorption of distal air space fluid was measured from the increase in 131I-albumin concentration in an isosmolar, physiological solution instilled into the developing lungs. In controls, distal air space fluid absorption was rapid and mediated by beta-adrenoceptors as demonstrated by reversal to fluid secretion after propranolol. Normal lung fluid absorption was also partially inhibited by amiloride. In contrast, CDH fetuses continued to show lung fluid secretion, and this secretion was not affected by either propranolol or amiloride. CDH lungs showed a 67% reduction in alpha-ENaC and beta-ENaC expression, but no change in alpha1-Na-K-ATPase expression. These studies demonstrate: 1) CDH delays lung maturation with impaired distal air space fluid absorption secondary to inadequate Na+ uptake by the distal lung epithelium that results in fluid-filled lungs at birth with reduced capacity to establish postnatal breathing, and 2) the main stimulus to lung fluid absorption in near-term control fetuses, elevated endogenous epinephrine levels, is not functional in CDH fetuses.  相似文献   

19.
Teratogenic potentially of single dose of thalidomide in JW-NIBS rabbits   总被引:1,自引:0,他引:1  
A single dose (500 mg/kg) of thalidomide was administered orally to pregnant JW-NIBS rabbits in various stages of organogenesis. Head anomalies in fetuses (anencephaly, holoprosencephaly and hydrocephaly) were induced at a high frequency by the maternal administration of thalidomide on day 7, and also in a few fetuses on day 8. These fetuses included those with an abnormal skull such as hypoplasia of cerebral and facial skull. Microphthalmia in fetuses was observed with a single administration from day 7 to 12 of gestation. Contracture of forearms and club foot in fetuses resulted from the maternal administration of thalidomide on day 8 or 9 of gestation, respectively. With a single administration on day 8 or 9 of gestation, kinky tail in fetuses resulted, and brachyury was observed with a high frequency from day 8 to 11 of gestation. Skeletal anomalies such as fusion or displacement of coccygeal vertebral bodies were observed at a high frequency with a single treatment from day 8 to 10 of gestation. Among the internal anomalies observed was abnormal lobation of the lung, resulting from a single treatment from day 6 to 15 of gestation (except for day 13), and abnormal lobation of the liver, induced from day 7 to 10. The cardiovascular anomalies were induced at a high frequency with a single treatment from day 7 to 9 of gestation. In the present experiment, the critical period for each anomaly produced by thalidomide in JW-NIBS rabbits was determined.  相似文献   

20.
The transverse growth of long bones during intrauterine development was studied in rat fetuses subjected to experimental oligohydramnios in order to determine whether the skeletal changes, if any, in extrinsic fetal akinesia were similar to those observed in curarized rat fetuses with the fetal akinesia deformation sequence. Oligohydramnios was induced by daily extraction of amniotic fluid from day 17 of gestation until term. Experimental fetuses were compared with a sham-operated control group. The total area and perimeter, the absolute and relative amount of periosteum and bone trabeculae, the major and minor axes, and the elongation factor were measured in histological cross sections of the femoral metaphysis and diaphysis with an IBAS 1 image analysis system. Rat fetuses in the experimental group showed multiple articular contractures, redundant skin, and lung hypoplasia, a phenotype consistent with the oligohydramnios sequence. No alterations in femoral shape and transverse growth of the metaphysis and diaphysis were noted in these fetuses. These results suggest that the main mechanical factor related to fetal bone modeling is muscular strength, while motion would be mainly involved in fetal joint development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号