首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phospholipid and fatty acid composition as well as the effect of platelet lipid composition modifications on the functional parameters of platelets were studied in blood sera from healthy donors and from patients with ischemic heart disease (IHD). It was found that the content of cholesterol and phospholipid hydrolysis products in IHD patients was increased. Reconstitution of the lipid composition of donor platelets by lysophosphatidylcholines, phosphatidic acid, fatty acids and cholesterol led to the increase of the platelet functional activity. It is suggested that the increased adsorption of Ca2+ on platelet surface is due to alterations in the platelet lipid composition in IHD and after modifications.  相似文献   

2.
Using a previously developed spectrophotometric method (Bioorg. Khim. 2009, vol. 35, pp. 629–639) a significant increase of myeloperoxidase (MPO) activity (versus healthy control) was found in blood plasma of patients with type 2 diabetes mellitus (DM2) without cardiovascular complications, and also in patients with ischemic heart disease (IHD). The plasma MPO concentration measured by an enzyme-linked immunosorbent assay was significantly higher only in blood plasma of patients with DM2 and IHD. A significant positive correlation between blood MPO activity and blood MPO content was observed only in blood plasma samples from healthy donors. Increased MPO activity did not correlate with MPO concentration in blood plasma of patients with DM2 and DM2 with IHD. Taken together, these results indicate that studies on the MPO role in the development of pathological processes should include simultaneous determination of both the amount of enzyme and its peroxidase activity in blood of patients. The proposed approach gives comprehensive information about the relationship between MPO activity and MPO concentration in patient’s blood. Since the high concentration of MPO is a diagnostically important parameter for the prediction of development of endothelial dysfunction and cardiovascular diseases, the obtained results point to the contribution of MPO-dependent reactions in cardiovascular complications associated with diabetes mellitus. MPO activity may serve as an additional diagnostic criterion for determination of risk of IHD in DM patients.  相似文献   

3.
A phospholipase A2 with an arachidonoyl residue preference was purified about 11,700-fold from human platelet soluble fraction to near homogeneity. The purified phospholipase A2 exhibited a molecular mass of about 90 kDa on SDS polyacrylamide gel electrophoresis and hydrolyzed phospholipids with an arachidonoyl residue more effectively than those with a linoleoyl residue. The catalytic activity of the purified enzyme detected with phosphatidylcholine as a substrate increased sharply between 3 x 10(-7) and 10(-6) M free calcium ion. Thus, the 90-kDa phospholipase A2 is considered to be a novel enzyme, distinct from the 14-kDa one previously purified from human platelets. The 90-kDa phospholipase A2 may participate mainly in arachidonate metabolism of platelets.  相似文献   

4.
Using a sonicated dispersion of radiolabeled 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine as substrate, we found that phospholipase A2 activity of human platelets was enhanced 2.4-fold by albumin (1 mg/ml). The enzyme was recovered predominantly in the cytosolic fraction of platelets with less than a third of its activity being associated with the membrane fraction. In the presence of 24 mM n-octyl-beta-D-glucopyranoside (octylglucoside) phospholipase A2 was effectively (more than 90%) extracted from platelet lysates without solubilization of platelet membranes. Ion exchange chromatography of the soluble enzyme yielded a phospholipase A2 of unchanged total activity and great stability. This phospholipase A2 was active only in the presence of divalent cations (Ca2+ greater than Sr2+ greater than Mg2+ = 0), required albumin for optimal activity and exhibited exclusive positional specificity for the acyl ester bond at the 2-position of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. Indomethacin (500 microM), mepacrine (500 microM) and N-ethylmaleimide (4 mM) inhibited the phospholipase A2 by 69, 62 and 19%, respectively. The results are discussed in the light of previous findings on human platelet phospholipase A2.  相似文献   

5.
A membrane bound phospholipase A2 (phosphatide 2-acylhydrolase, EC 3.1.1.4) from human platelets has been purified 3500-fold, and partially characterized. Phospholipase A2 activity was assayed using [1(-14)C] oleate-labeled Escherichia coli or sonicated dispersions of synthetic phospholipids. The 2-acyl specificity of the phospholipase activity was confirmed using phosphatidylethanolamine labeled in the C-1 position as substrate. The purified enzyme was maximally active between pH 8.0 and 10.5, and had an absolute requirement for low concentrations of Ca2+. Indomethacin, but not aspirin, inhibited phospholipase A2 activity.  相似文献   

6.
N Kochhar  D Kaul 《FEBS letters》1992,299(1):19-22
Incubation of human platelets with cholesterol-poor, cholesterol-normal and cholesterol-rich liposomes revealed that: (i) acquisition or depletion of platelet membrane cholesterol was highly selective; (ii) variation in membrane cholesterol was highly selective. Variation in membrane cholesterol content (cholesterol-to-phospholipid molar ratio from 0.15-1.2) with respect to values found in unmodified normal platelets, was paralleled by the observed changes in amiloride-sensitive cytoplasmic pH, as well as phospholipase A2 activity. However, a decrease in cytoplasmic pH was accompanied by an increase in phospholipase A2 activity; (iii) membrane cholesterol-modulated changes in intra-platelet pH, as well as phospholipase A2 activity, was completely inhibited when platelets were pretreated with quinacrine (a specific phospholipase A2 inhibitor) before exposure to various types of liposomes. Although exposure of platelets (pretreated with amiloride) with various types of liposomes resulted in the inhibition of Na+/H+ exchange it had no noticeable effect upon the observed phospholipase A2 activity. Based upon these results we suggest that membrane cholesterol-modulated phospholipase A2 activity may be the basic mechanism responsible for the nature of Na+/H+ exchanger activity observed in cholesterol-enriched platelets, leading these platelets to a hypersensitized state.  相似文献   

7.
Substantial phospholipase A(1) activity has been demonstrated in human blood platelets, and a rapid method for its measurement is described. The enzyme requires taurocholate for full activity and in these conditions the pH optimum is 4.8. The phospholipase activity is released from platelets by incubation with thrombin.  相似文献   

8.
We tested the effects of calmodulin, two types of calmodulin antagonists, and various phospholipids on the phospholipase A2 activities of intact platelets, platelet membranes, and partially purified enzyme preparations. Trifluoperazine, chlorpromazine (phenothiazines) and N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7), at concentrations which antagonize the effects of calmodulin, significantly inhibited thrombin- and Ca2+ ionophore-induced production of arachidonic acid metabolites by suspensions of rabbit platelets and Ca2+-induced arachidonic acid release from phospholipids of membrane fractions, but not phospholipase A2 activity in purified enzyme preparations. The addition of acidic phospholipids, but not calmodulin, stimulated phospholipase A2 activity in purified enzyme preparations while decreasing its Km for Ca2+. The dose-response and kinetics of inhibition by calmodulin antagonists of acidic phospholipid-activated phospholipase A2 activity in purified preparations were similar to those of Ca2+-induced arachidonic acid release from membrane fractions. Calmodulin antagonists were also found to inhibit Ca2+ binding to acidic phospholipids in a similar dose-dependent manner. Our results suggest that the platelet phospholipase A2 is the key enzyme involved in arachidonic acid mobilization in platelets and is regulated by acidic phospholipids in a Ca2+-dependent manner and that calmodulin antagonists inhibit phospholipase A2 activity via an action on acidic phospholipids.  相似文献   

9.
It was reported previously that rat platelets release phospholipase A2 upon in vitro stimulation by thrombin, ADP, or A23187 (Horigome, K., Hayakawa, M., Inoue, K., & Nojima, S. (1987) J. Biochem. 101, 53-61). Secretion of phospholipase A2 was also observed with rabbit platelets. Rabbit platelets seem to release phospholipase A2 upon stimulation in vivo, because the rabbit plasma taken immediately after intravenous injection of PAF contained an appreciable level of phospholipase A2 activity and fewer platelets. Rabbit platelet phospholipase A2 released in vitro was purified by column chromatography using Sepharose CL-4B conjugated with anti-rat platelet derived phospholipase A2 monoclonal antibody, followed by reversed-phase HPLC. The purified enzyme was subjected to structural analysis by HPLC peptide mapping and primary sequence determination of the separated peptides. Based on the homology with rat platelet secretory phospholipase A2 (Hayakawa, M., Kudo, I., Tomita, M., Nojima, S., & Inoue, K. (1988) J. Biochem. 104, 767-772), a partial primary structure (62 amino acid residues) of the rabbit enzyme was tentatively determined; the two sequences were highly homologous (72%). The rabbit sequence was also nearly identical to that of rabbit ascitic fluid phospholipase A2, which was determined by Forst et al. (Forst, S., Weiss, J., Elsbach, P., Maraganore, J.M., Reardon, I., & Heinrikson, R.L. (1986) Biochemistry 25, 8381-8385). Phospholipase A2 from the membrane fraction of rabbit platelets was also purified; it had the same characteristics and th same amino-terminal sequence as the purified secretory enzyme. Secretory and membrane-bound phospholipase A2 of rabbit platelets may in fact be identical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The lipid mediators, platelet activating factor (PAF) and the eicosanoids, can be coordinately produced from the common phospholipid precursor, 1-O-alkyl-2-arachidonoylglycerophosphocholine (1-O-alkyl-2-arachidonoyl-GPC), through the initial action of a phospholipase A2 that cleaves arachidonic acid from the sn-2 position. The mouse macrophage cell line RAW 264.7, which was used as a model macrophage system to study the arachidonoyl-hydrolyzing phospholipase A2 enzyme(s), could be induced to release arachidonic acid in response to inflammatory stimuli. A phospholipase A2 that hydrolyzed 1-O-hexadecyl-2-[3H]arachidonoyl-GPC was identified in the cytosolic fraction of these macrophages. This phospholipase activity was optimal at pH 8 and dependent on calcium. Enzyme activity could be stimulated 3-fold by heparin, suggesting the presence of phospholipase inhibitory proteins in the macrophage cytosol. Compared to 1-alkyl-2-arachidonoyl-GPC, the enzyme hydrolyzed 1-acyl-2-arachidonoylglycerophosphoethanolamine (1-acyl-2-arachidonoyl-GPE) with similar activity but showed slightly greater activity against 1-acyl-2-arachidonoyl-GPC, suggesting no specificity for the sn-1 linkage or the phospholipid base group. Although comparable activity against 1-acyl-2-arachidonoylglycerophosphoinositol (1-acyl-2-arachidonoyl-GPI) could be achieved, the enzyme exhibited much lower affinity for the inositol-containing substrate. The enzyme did, however, show apparent specificity for arachidonic acid at the sn-2 position, since much lower activity was observed against choline-containing substrates with either linoleic or oleic acids at the sn-2 position. The cytosolic phospholipase A2 was purified by first precipitating the enzyme with ammonium sulfate followed by chromatography over Sephadex G150, where the phospholipase A2 eluted between molecular weight markers of 67,000 and 150,000. The active peak was then chromatographed over DEAE-cellulose, phenyl-Sepharose, Q-Sepharose, Sephadex G150 and finally hydroxylapatite. The purification scheme has resulted in over a 1000-fold increase in specific activity (2 mumol/min per mg protein). Under non-reducing conditions, a major band on SDS-polyacrylamide gels at 70 kDa was observed, which shifted to a lower molecular weight, 60,000, under reducing conditions. The properties of the purified enzyme including the specificity for sn-2-arachidonoyl-containing phospholipids was similar to that observed for the crude enzyme. The results demonstrate the presence of a phospholipase A2 in the macrophage cell line. RAW 264.7, that preferentially hydrolyzes arachidonoyl-containing phospholipid substrates.  相似文献   

11.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

12.
It was found that phospholipase A2 and lysophospholipase, both of which were released from thrombin-stimulated rat platelets, had high affinity to insolubilized heparin. Phospholipase A2 released from rat platelets was purified by the sequential use of column chromatography on heparin-Sepharose and TSK gel G2000SW (high-performance liquid chromatography, HPLC). The enzyme was near homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPLC, and its Mr was estimated to be 13,500. The purified enzyme was labile and lost its activity within 1 h when incubated at 37 degrees C. Phospholipids or detergent in the solution protected the enzyme against inactivation. Phospholipase activity was inhibited by p-bromophenacylbromide, but not by diisopropylfluorophosphate or iodoacetamide. Lysophospholipase, which was also released from rat platelets, was separated from phospholipase A2 by chromatography on heparin-Sepharose.  相似文献   

13.
In this study we demonstrate that: (1) although the major phospholipase A2 present in sheep platelets is activated by calcium ions, it can effectively catalyze hydrolysis of the sn-2 ester linkage in phospholipids in the absence of calcium; (2) expression of calcium-independent phospholipase A2 activity can be induced by NaCl utilizing purified (but not crude) cytosolic enzyme; and (3) calcium-independent phospholipase A2 activity is regulated by a reconstitutable cytosolic protein. Collectively, these results underscore the fundamental catalytic differences between extracellular and intracellular calcium-dependent phospholipases A2 and demonstrate that calcium is sufficient, but not necessary, for the activation of this class of intracellular phospholipases A2.  相似文献   

14.
Mechanisms involved in regulating the activity of intracellular phospholipase A2 enzymes that function in eicosanoid and platelet-activating factor production are poorly understood. The properties of the substrate in the membrane may play a role in modulating phospholipase A2 activity. In this study, the effect of anionic phospholipids, diacylglycerol (DAG) and phosphatidylethanolamine (PE) on the activity of a partially purified, intracellular, arachidonoyl-hydrolyzing phospholipase A2 from the macrophage cell line, RAW 264.7 was studied. For these experiments phospholipase A2 activity was assayed in the presence of 1 microM calcium by measuring the hydrolysis of [3H]arachidonic acid from sonicated dispersions of the ether-linked substrate, 1-O-hexadecyl-2[3H]arachidonoylglycerophosphocholine. All the anionic phospholipids tested, including phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI) and phosphatidylinositol-4,5-bisphosphate (PIP2), stimulated phospholipase A2 activity. At the lowest concentration of anionic phospholipids tested. PIP2 was the most stimulatory, resulting in a 7-fold increase in phospholipase A2 activity at 1 mol%. Co-dispersion of either DAG or PE with the substrate also induced a dose-dependent increase in phospholipase A2 activity, whereas sphingomyelin was inhibitory suggesting that the phospholipase A2 more readily hydrolyzed the ether-linked substrate when there was a decrease in the packing density of the bilayer. PIP2, together with either DAG or PE, synergistically stimulated phospholipase A2 activity by about 20-fold, and dramatically decreased the calcium concentration (from mM to nM) required for full activity of the enzyme. The results of this study demonstrate that the presence of anionic phospholipids and the packing characteristics of the bilayer can have pronounced effects on the activity and calcium requirement of an intracellular, arachidonoyl-hydrolyzing phospholipase A2 from macrophages.  相似文献   

15.
Rabbit platelets were labelled with [3H]glycerol and incubated with or without phorbol 12-myristate 13-acetate (PMA). Membranes were then isolated and assayed for phospholipase D (PLD) activity by monitoring [3H]phosphatidylethanol formation in the presence of 300 mM-ethanol. At a [Ca2+free] of 1 microM, PLD activity was detected in control membranes, but was 5.4 +/- 0.8-fold (mean +/- S.E.M.) greater in membranes from PMA-treated platelets. Under the same conditions, 10 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) stimulated PLD by 18 +/- 3-fold in control membranes, whereas PMA treatment and GTP[S] interacted synergistically to increase PLD activity by 62 +/- 12-fold. GTP[S]-stimulated PLD activity was observed in the absence of Ca2+, but was increased by 1 microM-Ca2+ (3.5 +/- 0.2-fold and 1.8 +/- 0.1-fold in membranes from control and PMA-treated platelets respectively). GTP exerted effects almost as great as those of GTP[S], but 20-30-fold higher concentrations were required. Guanosine 5'-[beta-thio]diphosphate inhibited the effects of GTP[S] or GTP, suggesting a role for a GTP-binding protein in activation of PLD. Thrombin (2 units/ml) stimulated the PLD activity of platelet membranes only very weakly and in a GTP-independent manner. The actions of PMA and analogues on PLD activity correlated with their ability to stimulate protein kinase C in intact platelets. Staurosporine, a potent protein kinase inhibitor, had both inhibitory and, at higher concentrations, stimulatory effects on the activation of PLD by PMA. The results suggest that PMA not only stimulates PLD via activation of protein kinase C but can also activate the enzyme by a phosphorylation-independent mechanism in the presence of staurosporine. However, under physiological conditions, full activation of platelet PLD may require the interplay of protein kinase C, increased Ca2+ and a GTP-binding protein, and may occur as a secondary effect of the activation of phospholipase C.  相似文献   

16.
S D Shukla 《Life sciences》1986,38(8):751-755
Phosphatidylinositol (PI) specific phospholipase C treatment of rabbit platelets caused 95% release of acetylcholinesterase in the supernatant and 4 to 6% hydrolysis of membrane PI in 2 min. Under these conditions there was no cell lysis as monitored by lack of lactate dehydrogenase activity in the medium. The phospholipase C had no activity towards phosphatidylinositol-4- phosphate and phosphatidylinositol-4,5-bis phosphate. Platelets pretreated with the phospholipase C responded normally to thrombin and platelet activating factor. It is concluded that acetylcholinesterase exists in specific interaction with PI in platelet membranes. Further, the membrane protein release phenomenon caused by the PI-specific phospholipase C did not effect the physiological responsiveness of platelets. Possible implications of these findings to the linkage between PI and membrane enzyme are also discussed.  相似文献   

17.
Phospholipase C (heat-labile hemolysin) was purified from Pseudomonas aeruginosa culture supernatants to near homogeneity by ammonium sulfate precipitation followed by a novel application of DEAE-Sephacel chromatography. Enzymatic activity remained associated with DEAE-Sephacel even in the presence of 1 M NaCl, but was eluted with a linear gradient of 0 to 5% tetradecyltrimethylammonium bromide. Elution from DEAE-Sephacel was also obtained with 2% lysophosphatidylcholine, and to a lesser extent with 2% phosphorylcholine, but not at all with choline. The enzyme was highly active toward phospholipids possessing substituted ammonium groups (e.g., phosphatidycholine, lysophosphatidylcholine, and sphingomyelin); however, it had little if any activity toward phospholipids lacking substituted ammonium groups (e.g., phosphatidylethanolamine, phosphatidylserine, and phosphaditylglycerol). Collectively, these data suggest that phospholipase C from P. aeruginosa exhibits high affinity for substituted ammonium groups, but requires an additional hydrophobic moiety for optimum binding. The specific activity of the purified enzyme preparation increased 1,900-fold compared with that of culture supernatants. The molecular weight of the phospholipase C was estimated to be 78,000 by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephacryl S-200 column chromatography and was 76,000 by high-performance size exclusion chromatography. The isoelectric point was 5.5. Amino acid analysis showed that phospholipase C was rich in glycine, serine, threonine, aspartyl, glutamyl, and aromatic amino acids, but was cystine free.  相似文献   

18.
Electron spin resonance techniques was used for the investigation of the structural organization of lymphocyte plasma membranes of healthy donors and IHD patients. We found the increased fluidity of peripheral blood lymphocyte membranes of patients with IHD using 5 doxyl stearic acid spin label. The ordering of the membrane lipids increased proportionally to the increase of cholesterol cell content. This is the important reason for the inhibition of mitogenic cell activity during IHD. Measured by the chlortetracycline-fluorescence alterations in the processes of mitogen-induced Ca+2 redistribution might be one of the mechanisms which mediates the influence of membrane structure changes on the lymphocyte functions.  相似文献   

19.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

20.
We have studied the phospholipase A2 activity in fractionated human neutrophils, employing labeled phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine as exogenous substrates. We used these phospholipid substrates labeled in the sn-1 position and measured the resulting labeled lysophospholipid forms in order to ascertain the phospholipase A2 specificity. In postnuclear supernatants from resting and A23187-activated cells, the phospholipase A2 activity showed a similar pH dependence curve with two pH optima at 5.5 and 7.5. Extracts from activated cells showed a 3-6-fold increase in enzyme activity. The subcellular distribution of phospholipase A2 activity in resting and A23187-treated human neutrophils was investigated by fractionation of postnuclear supernatants on continuous sucrose gradients. The neutral phospholipase A2 behaved as a membrane-bound enzyme and was mainly localized in the plasma membrane, the azurophilic granule, and in an ill-defined region of the gradient between the specific granules and mitochondria. The phospholipase A2 located in this undefined region showed a higher degree of activation than that located in other subcellular particulates in A23187-treated cells. This specific activation of an intracellular phospholipase A2 activity during cell stimulation indicates that cell compartmentalization may play a role in the formation of cell-activating and/or signal-transducing agents through the generation of arachidonate metabolites. Phosphatidylinositol was a better substrate for the plasma membrane enzyme, whereas phosphatidylcholine and phosphatidylethanolamine behaved as better substrates for intracellular organelle phospholipase A2 activities. The phospholipase A2 with maximal activity at pH 5.5 behaved as a soluble enzyme, and was almost completely localized in the azurophilic granules. Upon cell activation this acid enzyme activity was released in a similar way to beta-glucuronidase, a marker of azurophilic granules. These results demonstrate the different molecular properties of the phospholipase A2 activity, on the basis of its cellular location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号