首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
IS10 transposition is regulated by DNA adenine methylation   总被引:64,自引:0,他引:64  
We show that dam- mutants are a major class of E. coli mutants with increased IS10 activity. IS10 has two dam methylation sites, one within the transposase promoter and one within the inner terminus where transposase presumably binds. Absence of methylation results in increased activity of both promoter and terminus, and completely accounts for increased transposition in dam- strains. Transposition of Tn903 and Tn5 are also increased in dam- strains, probably for analogous reasons. Transposition is also increased when IS10 is hemimethylated. One hemimethylated species is much more active than the other and is estimated to be at least 1000 times more active than a fully methylated element. Evidence is presented that the promoter and inner terminus of IS10 are coordinately activated in a dam-dependent fashion, presumably because they are hemimethylated at the same time. Thus, in dam+ strains, IS10 will transpose preferentially when DNA is hemimethylated. We suggest specifically that IS10 transposition may preferentially occur immediately after passage of a chromosomal replication fork.  相似文献   

3.
4.
5.
DNA replication regulated by the priming promoter.   总被引:4,自引:2,他引:4       下载免费PDF全文
  相似文献   

6.
7.
Enhanced fucosyltransferase IV (FUT4) expression correlates with increased tumor malignancy in many carcinomas. However, little is known about the regulation of FUT4 expression, and whether FUT4 expression is influenced by the methylation status of the FUT4 promoter is unclear. In this study, we demonstrated that FUT4 expression is negatively correlated with the methylation degree of a CpG island in the FUT4 promoter, suggesting that the methylation status of FUT4 promoter regulates the expression of FUT4. The results indicate that manipulating the methylation status of the FUT4 promoter to regulate FUT4 expression may be a novel approach in the treatment of malignant tumors.  相似文献   

8.
In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown ceils, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoiling-dependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.  相似文献   

9.
DNA adenine methylase mutants of Salmonella typhimurium contain reduced amounts of FinP, an antisense RNA encoded by the virulence plasmid pSLT. Lowered FinP levels are detected in both Dam- FinO+ and Dam- FinO- backgrounds, suggesting that Dam methylation regulates FinP production rather than FinP half-life. Reduced amounts of F-encoded FinP RNA are likewise found in Dam- mutants of Escherichia coli. A consequence of FinP RNA scarcity in the absence of DNA adenine methylation is that Dam- mutants of both S. typhimurium and E. coli show elevated levels of F plasmid transfer. Inhibition of F fertility by the S. typhimurium virulence plasmid is also impaired in a Dam- background.  相似文献   

10.
Plasma homocysteine is regulated by phospholipid methylation   总被引:2,自引:0,他引:2  
Mild hyperhomocysteinemia is an independent risk factor for cardiovascular disease. Homocysteine, a non-protein amino acid, is formed from S-adenosylhomocysteine and partially secreted into plasma. A potential source for homocysteine is methylation of the lipid phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine N-methyltransferase in the liver. We show that mice that lack phosphatidylethanolamine N-methyltransferase have plasma levels of homocysteine that are approximately 50% of those in wild-type mice. Hepatocytes isolated from methyltransferase-deficient mice secrete approximately 50% less homocysteine. Rat hepatoma cells transfected with phosphatidylethanolamine N-methyltransferase secrete more homocysteine than wild-type cells. Thus, phosphatidylethanolamine N-methyltransferase is an important source of plasma homocysteine and a potential therapeutic target for hyperhomocysteinemia.  相似文献   

11.
12.
Modifications on histones or on DNA recruit proteins that regulate chromatin function. Here, we use nucleosomes methylated on DNA and on histone H3 in an affinity assay, in conjunction with a SILAC-based proteomic analysis, to identify "crosstalk" between these two distinct classes of modification. Our analysis reveals proteins whose binding to nucleosomes is regulated by methylation of CpGs, H3K4, H3K9, and H3K27 or a combination thereof. We identify the origin recognition complex (ORC), including LRWD1 as a subunit, to be a methylation-sensitive nucleosome interactor that is recruited cooperatively by DNA and histone methylation. Other interactors, such as the lysine demethylase Fbxl11/KDM2A, recognize nucleosomes methylated on histones, but their recruitment is disrupted by DNA methylation. These data establish SILAC nucleosome affinity purifications (SNAP) as a tool for studying the dynamics between different chromatin modifications and provide a modification binding "profile" for proteins regulated by DNA and histone methylation.  相似文献   

13.
Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4) have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ), and even low grade gliomas (LGGs, WHO grade 2) eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6)-methylguanine-DNA methyltransferase (MGMT) that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP) in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1) IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2) LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3) LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4) higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.  相似文献   

14.
15.
Xu ZM  Gao WR  Mei Q  Chen J  Lu J 《BMB reports》2008,41(3):230-235
LRP15 is a novel gene cloned from lymphocytic cells, and its function is still unknown. Bioinformatic data showed that LRP15 might be regulated by DNA methylation and had an important role in DNA repair. In this study, we investigate whether the expression of LRP15 is regulated by DNA methylation, and whether overexpression of LRP15 increases efficiency of DNA repair of UV-induced DNA damage in HeLa cells. The results showed (1) the promoter of LRP15 was hypermethylated in HeLa cells, resulting a silence of its expression. Gene expression was restored by a demethylating agent, 5-aza-2'-deoxycytidine, but not by a histone deacetylase inhibitor, trichostatin A; (2) overexpression of LRP15 inhibited HeLa cell proliferation, and the numbers of cells in the G2/M phase of the cell cycle in cells transfected with LRP15 increased about 10% compared with controls; (3) cyclin B1 level was much lower in cells overexpressing LRP15 than in control cells; and (4) after exposure to UV radiation, the LRP15-positive cells showed shorter comet tails compared with the LRP15-negative cells. From these results we conclude that the expression of LRP15 is controlled by methylation in its promoter in HeLa cells, and LRP15 confers resistance to UV damage and accelerates the DNA repair rate.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号