首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Klaus Raschke  Rainer Hedrich 《Planta》1985,163(1):105-118
(±)-Abscisic acid (ABA) at 10-5 M was added to the transpiration stream of leaves of 16 species (C3 and C4, monocotyledons and dicotyledons). Stomatal responses followed one of three patterns: i) stomata that were wide and insensitive to CO2 initially, closed partially and became sensitive to CO2; ii) for stomata that were sensitive to CO2 before the application of ABA, the range of highest sensitivity to CO2 shifted from high to low intercellular partial pressures of CO2, for instance in leaves of Zea mays from 170–350 to 70–140 bar; iii) when stomata responded strongly to ABA, their conductance was reduced to a small fraction of the initial conductance, and sensitivity to CO2 was lost. The photosynthetic apparatus was affected by applications of ABA to various degrees, from no response at all (in agreement with several previous reports on the absence of effects of ABA on photosynthesis) through a temporary decrease of its activity to a lasting reduction. Saturation curves of photosynthesis with respect to the partial pressure of CO2 in the intercellular spaces indicated that application of ABA could produce three phenomena: i) a reduction of the initial slope of the saturation curve (which indicates a diminished carboxylation efficiency); ii) a reduction of the level of the CO2-saturated rate of assimilation (which indicates a reduction of the ribulose-1,5-bisphosphate regeneration capacity); and iii) an increase of the CO2 compensation point. Photosynthesis of isolated mesophyll cells was not affected by ABA treatments. Responses of the stomatal and photosynthetic apparatus were usually synchronous and often proportional to each other, with the result that the partial pressure of CO2 in the intercellular spaces frequently remained constant in spite of large changes in conductance and assimilation rate. Guard cells and the photosynthetic apparatus were able to recover from effects of ABA applications while the ABA supply continued. Recovery was usually partial, in the case of the photosynthetic apparatus occasionally complete. Abscisic acid did not cause stomatal closure or decreases in the rate of photosynthesis when it was applied during a phase of stomatal opening and induction of photosynthesis that followed a transition from darkness to light.Abbreviations and symbols A rate of CO2 assimilation - ABA (±)-abscisic acid - c a partial pressure of CO2 in the ambient air or in the gas supplied to the leaf chambers - c i partial pressure of CO2 in the intercellular spaces of a leaf - e a partial pressure of H2O in the air - g conductance for water vapor - J quantum flux - T 1 leaf temperature  相似文献   

2.
C. M. Willmer  R. Don  W. Parker 《Planta》1978,139(3):281-287
Straight-chain saturated fatty acids (C6-C11) and abscisic acid (ABA) accumulate in the leaves of Phaseolus vulgaris L. and Hordeum vulgare L. under water stress. ABA and certain of the fatty acids, particularly decanoic and undecanoic acid, can inhibit stomatal opening and cause stomatal closure in epidermal strips of Commelina communis L. depending on the incubating medium used. 10-4 M (±)-ABA inhibits opening in media containing either high or relatively low concentrations of KCl but causes closure only in the latter medium. The fatty acids (at 10-4 M) prevent opening in both media while significant closure of open stomata was caused only by undecanoic acid in both media and, additionally, by decanoic acid in the low-KCl medium. 10-4 M formic acid also caused stomatal closure and prevented opening to significant extents in the low-KCl medium (it was not tested in the high-KCl medium). The efficacy of undecanoic acid in causing 50% inhibition of opening is about three orders of magnitude lower than that of ABA. At a concentration of 10-3 M, nonanoic, decanoic and particularly undecanoic acid and all-trans-farnesol cause increased cell leakage in Beta vulgaris L. root tissue. Undecanoic acid (10-4 M) also causes some loss of guard cell integrity in C. communis within 1.5 h of treatment. ABA (10-4 M) reduces transpiration rates in barley and C. communis leaves when applied via the transpiration stream but decanoic and undecanoic acids did not have this effect. Transpiration was not affected when ABA or the fatty acids were applied to the leaf surfaces.Abbreviations ABA abscisic acid - RWC relative water content - SCFA short-chain fatty acids Deceased May 1977  相似文献   

3.
    
Closure of stomata by abscisic acid (ABA) was studied by floating leaf epidermal strips of Commelina communis L. in PIPES buffer (pH 6.8) containing a range of KCl concentrations. Control apertures were greatest at high concentrations of the salt, and the effects of ABA, in terms of closure, were most pronounced below 100 mol m-3 KCl. Stomata opened on strips floated on buffer plus 50 mol m-3 KCl and closed within 10 min when transferred to the same medium plus 0.1 mol m-3 ABA. [2-14C]ABA was used to study uptake and distribution of the hormone by the epidermal strips. It was calculated that no more than 6 fmol ABA were present per stomatal complex at the time of closure, although uptake continued thereafter. Microautoradiography indicated that radioactivity from [2-14C]ABA accumulated in the stomatal complex at or near the guard cells within 20 min. TLC was used to examine the state of the label after 1 h incubation. Efflux of label from preincubated tissue appeared to occur in three phases (t1/2=7.2 s, 4.0 min, 35.2 min). Efflux was correlated with stomatal re-opening. The results confirm that ABA can accumulate in the epidermis of C. communis.Abbreviation ABA Abscisic acid  相似文献   

4.
The concentration of potassium chloride required in the incubation medium to open stomata in isolated epidermal tissues of Commelina communis L. and Vicia faba L. could be lowered from 100 mM to 10 mM if the proton concentration of the ambient solution was increased from pH 5.6 to pH 3.5. This acidification effect was formerly attributed to the destruction of epidermal and subsidiary cells resulting in a relief of back pressure upon guard cells. While guard cells remain viable at pH 3.5, as demonstrated by their susceptibility to inhibition by uptake of glucose or to uncoupling by DNP, incipient destruction of the cells surrounding them could first be observed 30 min after the onset of the incubation experiment. By this time, however, the stomata had already opened; the time course of stomatal opening at pH 3.5 did not show any lag phase corresponding to the time required for damaging epidermal cells and showed no difference to that at pH 5.6 Thus, the acid-stimulated opening of stomata appears to be a biphasic phenomenon consisting of a physiologic effect onto which the physical effect of the relief of back pressure is superimposed over longer periods of incubation. To interpret the physiologic role of an increased proton concentration in the ambient solution of isolated epidermal strips, it is suggested that guard cells take up protons and chloride ions in an electroneutral symport. While protons are extruded again to generate the negative membrane potential required for potassium influx, chloride ions are retained to maintain electroneutrality.  相似文献   

5.
Radioimmunoassay for the determination of free and conjugated abscisic acid   总被引:8,自引:0,他引:8  
Elmar W. Weiler 《Planta》1979,144(3):255-263
The characterization and application of a radioimmunoassay specific for free and conjugated abscisic acid (ABA) is reported. The antibodies produced against a bovine serum albumin-(±)-ABA conjugate have a high affinity for ABA (Ka=1.3x109l mol-1). Trans, trans-ABA and related compounds, such as xanthoxin, phaseic acid, dihydrophaseic acid, vomifoliol or violaxanthin do not interfere with the assay. The detection limit of this method is 0.25x10-12 mol ABA, the measuring range extends to 20x10-12 mol, and average recoveries are 103%. Because of the high specificity of this immunoassay, no extract purification steps are required prior to analysis. Several hundred plants can be analyzed per day in a semi-automatic assay performance. ABA has been detected in all higher plant families examined, but was absent in the blue-green alga, Spirulina platensis, the liverwort Marchantia polymorpha, and two species of fungi.Abbreviations ABA abscisic acid - BHT 2.6-di-t-butyl-4-methyl phenol - TLC thin-layer chromatography - HSA human serum albumin Part 7 in the Series: Use of Immunoassay in Plant Science  相似文献   

6.
L. D. Incoll  G. C. Whitelam 《Planta》1977,137(3):243-245
Transpiration from excised leaves of Anthephra pubescens Nees was enhanced by 1 and 10 mmol m-3 kinetin. Stomatal opening in isolated epidermal strips of A. pubescens under CO2-free air and in the absence of K+ was enhanced by 10 mmol m-3 kinetin.Abbreviations ABA abscisic acid  相似文献   

7.
H. Schnabl 《Planta》1978,144(1):95-100
Chloride ions are necessary to compensate for the positively charged potassium ions imported into guard cells of Allium cepa L. during stomatal opening. Therefore an external Cl- supply of intact Allium plants is important. But high levels of chloride have been found to reduce the sensitivity of the starch-lacking stomata and isolated guard cell protoplasts (GCPs) from Allium to potassium ions, fusicoccin and abscisic acid. Furthermore, with high levels of chloride, malate anions disappear from the guard cells of Allium, a finding which contrasts with situation in Vicia where the stomatal sensitivity to K+ ions, fusicoccin and ABA is not influenced by Cl- ions and malate levels are unaffected. It is suggested that the absence of malate as a proton yielding primer inhibits the mechanism of H+/K+ exchange in Allium.Abbreviations ABA abscisic acid - FC fusicoccin - GCPs guard cell protoplasts  相似文献   

8.
An H+ ATPase at the plasma-membrane of guard cells is thought to establish an electrochemical gradient that drives K+ and Cl uptake, resulting in osmotic swelling of the guard cells and stomatal opening. There are, however, conflicting results regarding the effectiveness of the plasma-membrane H+-ATPase inhibitor, vanadate, in inhibiting both H+ extrusion from guard cells and stomatal opening. We found that 1 mM vanadate inhibited light-stimulated stomatal opening in epidermal peels of Commelina communis L. only at KCl concentrations lower than 50 mM. When impermeant n-methylglucamine and HCl (pH 7.2) were substituted for KCl, vanadate inhibition was still not observed at total salt concentrations50 mM. In contrast, in the absence of Cl, when V2O5 was used to buffer KOH, vanadate inhibition of stomatal opening occurred at K+ concentrations as high as 70 mM. Partial vanadate inhibition was observed in the presence of the impermeant anion, iminodiacetic acid (100 mM KHN(CH2CO2H)2). These results indicate that high concentrations of permeant anions prevent vanadate uptake and consequently prevent its inhibitory effect. In support of this hypothesis, an inhibitor of anion uptake, anthracene-9-carboxylic acid, partially prevented vanadate inhibition of stomatal opening. Other anion-uptake inhibitors (1 mM 4,4-diisothiocyanatostilbene-2,2-disulfonic acid, 1 mM 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid, 200 M Zn2+) were not effective. Decreased vanadate inhibition at high Cl/vanadate ratios may result from competition between vanadate and Cl for uptake. Unlike metabolic inhibitors, vanadate did not affect the extent of stomatal closure stimulated by darkness, further indicating that the observed action of vanadate represents a specific inhibition of the guard-cell H+ ATPase.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - FC fusicoccin - SITS 4-acetamido-4-isothiocyanostilbene-2,2-disulfonic acid We thank Drs. R.T. Leonard (University of California, Riverside, USA) and K.A, Rubinson (Yellow Springs, Oh., USA) for helpful comments on the research, Janet Sherwood (Harvard University) for excellent plant care, and Angela Ciamarra, Anne Gershenson, Gustavo Lara (Harvard University) and Orit Tal (Hebrew University) for valuable technical assistance. This research was supported by a grant from the National Science Foundation (DCB-8904041) to S.M.A.  相似文献   

9.
F. Bangerth 《Planta》1982,155(3):199-203
Immediately after harvest, abscisic acid (ABA) extracted from fruits of the apple cultivar Golden Delicious comprised solely the cis-trans isomer. During postharvest ripening, however, trans-trans ABA accumulated and finally exceeded the level of cis-trans ABA. The two geometrical isomers were separated and identified by high-performance liquid chromatography (HPLC) and combined gas chromatography-mass spectrometry. After purification by HPLC the putative trans-trans isomer yielded considerable quantities of cis-trans ABA, when irradiated with UV light. This isomerization was more rapid than the reverse reaction. The physiological significance of the accumulation of trans-trans ABA is discussed, as well as the applications of these results in the use of trans-trans ABA as an internal standard during the extraction and quantification of ABA from plant tissues.Abbreviations ABA 2-cis-4-trans abscisic acid - t-ABA 2-trans-4-trans abscisic acid - ECD electron capture detector - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PVP water insoluble polyvinylpyrroli-done - UV ultraviolet  相似文献   

10.
All stereoisomers of xanthoxin (XAN) and abscisic aldehyde (ABA-aldehyde) were prepared from (R) and (S)-4-hydroxy--cyclogeraniol via asymmetric epoxidation. Their stomatal closure activities were measured on epidermal strips of Commelina communis L. Natural (S)-ABA-aldehyde showed strong activity comparable to that of (S)-abscisic acid (ABA). Natural (1S, 2R, 4S)XAN and (1S, 2R, 4R)-epi-XAN also induced stomatal closure at high concentrations. On the other hand, unnatural (1R)-enantiomers of XAN, epi-XAN, and ABA-aldehyde were not effective. To further examine the Stereoselectivity on the biosynthetic pathway to ABA, deuterium-labeled substrates were prepared and fed to Lycopersicon esculentum Mill, under non-stressed or water-stressed conditions. Substantial incorporations into ABA were observed in the cases of natural (1S, 2R, 4S)-XAN, (1S, 2R, 4R)-epi-XAN and both enantiomers of ABA-aldehyde, leading to the following conclusions. The negligible effect of unnatural (1R)-enantiomers of XAN, epi-XAN and ABA-aldehyde can be explained by their own biological inactivity and/or their conversion to inactive (R)-ABA. Even in the isolated epidermal strips, putative aldehyde oxidase activity is apparently sufficient to convert ABA-aldehyde to ABA while the activity of XAN dehydrogenase seems very weak. The stereochemistry of the 1, 2-epoxide is very important for the XAN-dehydrogenase while this enzyme is less selective regarding the 4-hydrdxyl group of XAN and converts both (1S, 2R, 4S)-XAN and (1S, 2R, 4R)-epi-XAN to (S)-ABA-aldehyde. Abscisic aldehyde oxidase can nonstereoselectively convert both (S) and (R)-ABA-aldehyde to biologically active (S) and inactive (R)-ABA, respectively.Abbreviations ABA abscisic acid - ABA-aldehyde abscisic aldehyde - DET diethyl tartrate - epi-XAN xanthoxin epimer - FCC flash column chromatography - GC-EI-MS gas chromatography-electron impact-mass spectrometry - MeABA abscisic acid methyl ester - IR infrared - NMR nuclear magnetic resonance - PCC pyridinium chlorochromate - THF tetrahydrofuran - XAN xanthoxin The authors are very grateful to Mr J.K. Heald (Department of Biological Sciences, University of Wales, Aberystwyth, UK) and Dr. R. Horgan for carrying out GC-EI-MS analyses and advice, respectively.This work was supported by the Japan Society for the Promotion of Science (Fellowship for Young Japanese Researcher No. 0040672).  相似文献   

11.
The effect on stomatal closure by ABA and its analogues, WL19224 and WL19377 was investigated. The rate of closure showed a sigmoid curve when various concentrations of ABA were applied. A concentration of 10-9 M ABA was the threshold for stomatal closure; maximal closure occurred at higher concentrations (from 10-6 M to 10-3 M). Use of the analogue WL19224 resulted in similar closure responses. However, ABA was more effective at lower concentrations. For example, at 10-3 M of either WL19224 and ABA, stomata closed to 2.2 μm and about 3 μm, respectively. In contrast, applications of the ABA analogue WL19377 had no effect on stomatal closure. In fact, at concentrations of WL19377 higher than 10-4 M, stomata were stimulated to open, to about 10% of their initial size. Likewise, applications of WL19377 along with ABA, inhibited ABA-induced stomatal closure. This inhibition was linearly related to the concentrations of the compounds applied. In conclusion, the structural requirements for biological activity of ABA and its analogues cannot be considered individually, but must be assessed for their roles as part of an entire functional group. Although compounds may have similar structures, their ability to control certain physiological activities may be quite different.  相似文献   

12.
E. A. C. MacRobbie 《Planta》1989,178(2):231-241
The influx of 45Ca into isolated guard cells of Commelina communis L. has been measured, using short uptake times, and washing in ice-cold La3+-containing solutions to remove extracellular tracer after the loading period. Over 0.5–4 min the uptake was linear with time, through the origin. Over 20–200M external Ca2+ the influx measured with 10–20 mM external KCl was in the range 0.3–2.3 pmol·cm-2·s-1 (on the basis of estimated guard-cell area); with only 1 mM KCl externally the 45Ca influx was significantly reduced, in the range 0.3–1.1 pmol·cm-2·s-1 for external Ca2+ of 50–100 M. The results indicate that the Ca-channel is voltage-sensitive, opening with depolarisation. No consistent effect of the addition of abscisic acid could be found. In different experiments, on the addition of 0.1 mM abscisic acid the Ca2+ influx was sometimes stimulated by 28–79%, was sometimes unaffected, and was sometimes inhibited by 16–29%. The results rule out a long-lasting stimulation of 45Ca influx by ABA, but they do not rule out a transient stimulation followed by inhibition, perphaps as a consequence of down-regulation of Ca2+ influx by increasing cytoplasmic Ca2+. The hypothesis that ABA may act via an action on Ca2+ influx, increasing cytoplasmic Ca2+, with consequent effects on voltage-dependent and Ca2+-dependent ion channels in both plasmalemma and tonoplast, is neither proved nor disproved by these results.Abbreviations ABA abscisic acid - Cao, Ko external Ca and K concentrations  相似文献   

13.
It is well known that endogenous abscisic acid (ABA) levels increase rapidly in response to drought stress and that this induces stomatal closure. In Arabidopsis thaliana, ABA levels increased rapidly in the leaves and roots when intact wild-type whole plants were exposed to drought stress. However, if the leaves and roots were separated and exposed to drought independently, the ABA level increased only in the leaves. These results suggest that, under our experimental conditions, ABA is synthesized mainly in the leaves in response to drought stress and that some of the ABA accumulated in the leaves is transported to the roots. Tracer experiments using isotope-labeled ABA indicate that the movement of ABA from leaves to roots is activated by water deficit in the roots. We also demonstrate that the endogenous ABA level in the leaves increased only when the leaves themselves were exposed to drought stress, suggesting that leaves play a major role in the production of ABA in response to acute water shortage.  相似文献   

14.
Michael R. Blatt 《Planta》1990,180(3):445-455
Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H+-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K+ channels at the membrane of intact guard cells ofVicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K+ channels. On adding 10 M ABA in the presence of 0.1, 3 or 10 mM extracellular K+, the free-running membrane potential (V m) shifted negative-going (–)4–7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K+-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response inV m. Calculated atV m, the K+ currents translated to an average 2.65-fold rise in K+ efflux with ABA. Abscisic acid was not observed to alter either K+-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K+ channels or channel conductance, rather than a direct effect of the phytohormone on K+-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K+ flux. Instead, thev highlight a rise in membranecapacity for K+ flux, dependent on concerted modulations of K+-channel and leak currents, and sufficiently rapid to account generally for the onset of K+ loss from guard cells and stomatal closure in ABA.  相似文献   

15.
The release (=the measured loss) of amino acids was studied in Commelina benghalensis leaf disks. The release is assumed to be the result of influx and efflux, therefore, both movements were investigated.The uptake of 14C-labeled valine exhibited a biphasic isotherm. The uptake was pH-dependent, especially at low substrate concentrations (pH optimum 4.8). Signals for amino acid/proton co-transport were observed: stimulation of the uptake by fusicoccin (FC), inhibition by diethylstilbestrol (DES) or by high K+ concentrations. In the light, the ATP level of the disks was maintained during the uptake period (2 h), in darkness the ATP content decreased from 87 to 24 nmol g–1 fr. wt. However, light-promoted uptake, which is explained in the proton pump concept by an intensified proton extrusion as the result of high ATP production, was lacking.The release of amino acids was increased by washing with p-chloromercuriphenyl sulphonic acid (PCMBS), nystatin, 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), or KCN. The release (Q10 about 1.5) was independent of the external pH and was linearly related to the intracellular amino acid concentration. Light enhanced the rate of release to the same extent at all intracellular concentrations. The present results suggest that the release is balanced by a, at least partially, proton-driven influx and a diffusional ligh-promoted efflux. A provisional model shows how the diffusional effulx can be indirectly controlled by a counter-flow fueled by the metabolism.Abbreviations PCMBS p-chloromercuriphenylsulphonic acid - CCCP carbonyl cyanide m-chlorophenyl hydrazone - DES diethylstibestrol - DCMU 3 (3,4-dichlorophenyl)-1, 1-dimethyl urea - TRIS 2-amino-2-(hydromethyl)propane-1,3 diol - MES 2-(N1-morpholino) ethane sulphonic acid monohydrate - FC fusicoccin  相似文献   

16.
Effect of abscisic acid on the transport of assimilates in barley   总被引:15,自引:0,他引:15  
The effect of abscisic acid (ABA) on assimilate transport in barley was investigated in two parallel experiments. First, the effect upon [14C]sucrose transport from the flag leaf to the ear of a single ABA application made at different stages of growth of the fruits was investigated; the effect was measured 24 h after treatment. Second, the effect of a single application of ABA made at the same stages of growth as above on grain weight of the mature plant was investigated. In both types of experiments ABA was applied once to the ear of different plants as an aqueous solution (10-3–10-5 M), one to five weeks after anthesis. [14C] sucrose was applied by means of agar blocks. Parallel to these experiments, the endogenous content of ABA was investigated in the developing grains. When ears were treated with ABA two or four weeks after anthesis, an increase of up to 70% in the 14C-transport from the flag leaf to the ear was observed within a 24-h period after treatment (short duration experiments). At these growth stages the endogenous concentrations of ABA were low. In sharp contrast, ABA, especially in a concentration of 10-3 M, decreased 14C-import from the flag leaf when applied three weeks after anthesis. At this stage the endogenous ABA content had reached its maximum. Long duration experiments with a single application of ABA to the car two weeks after anthesis resulted in a marked increase of weight per thousand kernels. ABA applications made earlier or later than two weeks after anthesis either reduced the grain weight or had no effect. It is concluded that ABA is involved in the regulation of assimilate transport from the leaves to the grains, possibly by influencing the unloading of sieve tubes in the ears. Promotion or inhibition of assimilate import by exogenously applied ABA may depend on the developmental stage of the grains and on the endogenous ABA level.Abbreviations ABA abscisic acid - TKW weight per thousand kernels  相似文献   

17.
18.
The typical soil micromycetes Aspergillus niger and Cladosporium cladosporioides from the family moniliaceae were investigated with emphasis on production of ABA into the culture medium. The both fungi were cultivated in a static liquid Czapek — Dox medium and agar Czapek — Dox medium. Aspergillus niger and Cladosporium cladosporioides showed ability to produce ABA. Analytical detection of ABA from the culture medium was performed by TLC combinated with biotest and HPLC with spectroscopy.  相似文献   

19.
Seven day old seedlings of Pisum sativum L., cv. Kleine Rheinländerin, were wilted for 3 days. After partially removing the roots, they were rewatered and at the same time radioactive abscisic acid([1-14C]ABA, spec. activity 1.7·108d s-1mmol-1) was applied for 1 h via the xylem of the roots. After 24 h, 4 days, and 12 days the seedlings were extracted and the metabolites of ABA were analyzed by means of thin-layer and gas chromatography in combination with mass spectrometry, autoradiography, and scintillation counting. Phaseic acid (PA) and dihydrophaseic acid (DPA) were identified as metabolites of ABA. The presence of another ABA-metabolite was also demonstrated. From its mass spectrum it has been postulated that this metabolite is 4-desoxy-ABA. In addition to these substances, several other metabolites, which are more polar than ABA and its known degradation products, were present in the seedlings. The quantity and number of these unknown metabolites increased with time.Abbreviations ABA abscisic acid - PA phaseic acid - DPA dihydrophaseic acid - TLC thin-layer chromatography - GC gas chromatography - PPO 2,5-diphenyloxazole - POPOP 2,2-p-phenylen bis(5-phenyloxazole)  相似文献   

20.
Pourtau N  Marès M  Purdy S  Quentin N  Ruël A  Wingler A 《Planta》2004,219(5):765-772
Leaf senescence can be triggered by a high availability of carbon relative to nitrogen or by external application of abscisic acid (ABA). Most Arabidopsis mutants with decreased sugar sensitivity during early plant development are either ABA insensitive (abi mutants) or ABA deficient (aba mutants). To analyse the interactions of carbon, nitrogen and ABA in the regulation of senescence, wild-type Arabidopsis thaliana (L.) Heynh. and aba and abi mutants were grown on medium with varied glucose and nitrogen supply. On medium containing glucose in combination with low, but not in combination with high nitrogen supply, senescence was accelerated and sucrose, glucose and fructose accumulated strongly. In abi mutants that are not affected in sugar responses during early development (abi1-1 and abi2-1), we observed no difference in the sugar-dependent regulation of senescence compared to wild-type plants. Similarly, senescence was not affected in the sugar-insensitive abi4-1 mutant. In contrast, the abi5-1 mutant did exhibit a delay in senescence compared to its wild type. As ABA has been reported to induce senescence and ABA deficiency results in sugar insensitivity during early development, we expected senescence to be delayed in aba mutants. However, the aba1-1 and aba2-1 mutants showed accelerated senescence compared to their wild types on glucose-containing medium. Our results show that, in contrast to sugar signalling in seedlings, ABA is not required for the sugar-dependent induction of leaf senescence. Instead, increased sensitivity to osmotic stress could have triggered early senescence in the aba mutants.Abbreviations ABA Abscisic acid - aba Abscisic acid deficient - abi Abscisic acid insensitive - Fv/Fm Maximum efficiency of photosystem II photochemistry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号