首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
We previously reported the isolation of a cDNA encoding the liver-specific isozyme of rat S-adenosylmethionine synthetase from a lambda gt11 rat liver cDNA library. Using this cDNA as a probe, we have isolated and sequenced cDNA clones for the rat kidney S-adenosylmethionine synthetase (extrahepatic isoenzyme) from a lambda gt11 rat kidney cDNA library. The complete coding sequence of this enzyme mRNA was obtained from two overlapping cDNA clones. The amino acid sequence deduced from the cDNAs indicates that this enzyme contains 395 amino acids and has a molecular mass of 43,715 Da. The predicted amino acid sequence of this protein shares 85% similarity with that of rat liver S-adenosylmethionine synthetase. This result suggests that kidney and liver isoenzymes may have originated from a common ancestral gene. In addition, comparison of known S-adenosylmethionine synthetase sequences among different species also shows that these proteins have a high degree of similarity. The distribution of kidney- and liver-type S-adenosylmethionine synthetase mRNAs in kidney, liver, brain, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.4-kilobase (kb) mRNA species hybridizable with a probe for kidney S-adenosylmethionine synthetase was found in all tissues examined except for liver, while a 3.4-kb mRNA species hybridizable with a probe for liver S-adenosylmethionine synthetase was only present in the liver. The 3.4-kb kidney-type isozyme mRNA showed the same molecular size as the liver-type isozyme mRNA. Thus, kidney- and liver-type S-adenosylmethionine synthetase isozyme mRNAs were expressed in various tissues with different tissue specificities.  相似文献   

3.
Murine cDNAs representing distinct genes for the regulatory subunits of calmodulin-dependent protein phosphatase (CaM-PrP) were cloned from a testis library, using probes prepared by PCR amplification of brain and testis mRNA. The cDNA sequence of the brain-specific isoform (beta 1) encodes a 170 amino acid protein (M(r) approximately 19.3 kDa), whereas that for the testis isoform (beta 2) contains 179 residues (M(r) approximately 20.7 kDa); these two sequences show approximately 80% amino acid identity. An oligonucleotide probe for the brain isoform hybridized to a single mRNA of 3.6 kilobases (kb) in many tissues, whereas using the beta 2 probe, two mRNAs of 1.8 and 0.8 kb were detected only in testis. The mRNA for the testis-specific isoform increases markedly during development, its pattern being virtually identical to that of mRNA for a testicular form of the catalytic subunit (alpha 3). These data are consistent with the biological co-regulation of catalytic and regulatory subunits of a testis-specific isoenzyme during germ cell maturation.  相似文献   

4.
5.
6.
7.
Complementary DNA clones coding for an Artemia ATPase have been isolated using an oligonucleotide probe for a region highly conserved between P-type ATPases. The nucleotide sequence of three overlapping clones, 3309 base-pairs, has been established. This sequence includes 78 nucleotides of 5' untranslated sequence, an open reading frame of 3009 nucleotides and 222 nucleotides of 3' untranslated sequences. The amino acid sequence predicted for the coding region is 71% similar to that of slow and fast twitch rabbit muscle sarcoplasmic reticulum Ca-ATPases. The homology is specially high in some regions of the protein that include the previously described regions that are similar between all known P-type ATPases, as well as transmembrane domains and intra- and extracellular domains adjacent to the membrane that are not conserved in P-type ATPases but have been proposed to be involved in calcium binding and transport in rabbit sarcoplasmic reticulum Ca-ATPases. Probes of this likely sarcoplasmic reticulum Ca-ATPase hybridize to two mRNAs of 5200 and 4500 bases. Although both mRNAs are already present in cryptobiotic embryos, the levels of the 5200 base mRNA decrease after development is reassumed, being undetectable after hatching of the nauplii. The levels of the 4500 base mRNA increase during development; maximal levels are reached by ten hours and are maintained at later stages of development.  相似文献   

8.
Cytosolic and mitochondrial aspartate aminotransferase cDNAs were cloned from a lambda gt11 rat liver cDNA library. The complete coding sequence and the 3' non-coding sequence of the cytosolic isozyme mRNA were obtained from two overlapping cDNA clones. Partial sequences of the mitochondrial enzyme cDNAs were found to be identical to the recently published complete sequence (Mattingly, J. R., Jr., Rodriguez-Berrocal, F. J., Gordon, J., Iriarte, A., and Martinez-Carrion, M. (1987) Biochem. Biophys. Res. Commun. 149, 859-865). A single mRNA (2.4 kb (kilobase pair] hybridizing to the mitochondrial cDNA probe was detected by Northern blot analysis, whereas the cytosolic cDNA probe labeled one major (2.1 kb) and two minor (1.8 and 4 kb) mRNAs. The 1.8-kb and the 2.1-kb cytosolic aspartate aminotransferase mRNAs differ in their 3' ends and probably result from the use of either of the two polyadenylation signals present in the 3' noncoding region of the major cytosolic aspartate aminotransferase mRNA. Glucocorticoid hormones increased the activity of cytosolic but not mitochondrial aspartate aminotransferase in both liver and kidney. The increase in the enzyme activity was accompanied by an increase in the amount of the three corresponding mRNAs, while the mitochondrial enzyme mRNA was not significantly modified.  相似文献   

9.
10.
Northern blot analysis with placental pregnancy-specific beta 1-glycoprotein (SP1) cDNA probe showed the presence of SP1 mRNAs in human testis. Presence of translational products of the mRNAs was demonstrated by Western blot analysis with anti-human SP1 antibodies albeit difference in mobilities between the testis and placental proteins was apparent. Screening of human testis cDNA library with placental SP1 probe yielded 4 groups of positive clones. Two groups were identical to human placental SP1 cDNAs previously reported. The other 2 groups consisted of cDNA of incompletely processed mRNAs. These 2 groups were present in high abundance. Sequence analysis suggested that the cDNAs were products of different genes.  相似文献   

11.
We describe the characterization of a rat kidney cDNA that encodes a novel Ca2+-transporting ATPase. The cDNA, termed RK 8-13, was isolated previously using an oligonucleotide hybridization probe corresponding to part of the ATP binding site of the sarcoplasmic reticulum Ca-ATPases (Gunteski-Hamblin, A.-M., Greeb, J., and Shull, G. E. (1988) J. Biol. Chem. 263, 15032-15040). The complete nucleotide sequence of the 4.5-kilobase cDNA has been determined, and the primary structure of the protein has been deduced. The enzyme consists of 999 amino acids, has an Mr of 109,223, and contains all of the conserved domains found in transport ATPases of the E1-E2 class. It exhibits 75-77% amino acid identity with the fast-twitch and slow-twitch/cardiac isoforms of the sarcoplasmic reticulum Ca-ATPase, and the hydropathy plots of the three enzymes are virtually identical. High levels of ATP-dependent Ca2+ uptake were demonstrated in microsomes of COS-1 cells that had been transfected with a construct consisting of the entire coding sequence of the cDNA in the expression vector p91023(B). Northern blot analyses of poly(A)+ RNA revealed that the mRNA for this protein is expressed in heart, skeletal muscle, uterus, brain, lung, liver, kidney, testes, small intestine, large intestine, and pancreas. These data show that the enzyme is a Ca2+-transporting ATPase and that its mRNA is expressed in a broad variety of both muscle and non-muscle tissues.  相似文献   

12.
13.
Epstein-Barr virus mRNAs produced by alternative splicing.   总被引:33,自引:4,他引:29       下载免费PDF全文
The structure of Epstein-Barr virus mRNAs transcribed in B95-8 cells has been studied by cDNA cloning and sequencing. We present here the analysis of four cDNAs. The corresponding mRNAs are probably transcribed from a single promoter located in the US region. They are produced by alternative splicing of exons transcribed from the US, IR and UL regions. The exons are spread over 100 kbp. The exons from the IR region constitute a unit which is repeated several times. The cDNAs share the exons from the US and IR regions. Some of the cDNAs also share some of the exons from the UL region. Each cDNA contains a long open reading frame or the 5' end of a long open reading frame which ends several hundred nucleotides downstream on the viral genome. The 5' untranslated regions are unusually long. Three mRNA species differing in their 5' untranslated regions may encode for the nuclear antigen EBNA-1. The other mRNAs encode for polypeptides which may not have any common region.  相似文献   

14.
The mouse monoclonal antibody (mAb) A36 produced by us and shown to induce extensive, "tangled" sperm agglutination was used to isolate cDNAs encoding its cognate antigen. Three overlapping cDNA clones specifically recognized by the mAb were isolated from a human testis cDNA expression library in lambdagt11. Sequencing of these cDNAs yielded the complete nucleotide sequence of a 3-kilobase cDNA that encodes the mAb-related polypeptide, designated sperm antigen-36 (SA-36), composed of 558 deduced amino acids. SA-36 cDNA contained a 5' untranslated region of 234 nucleotides (nt), an open reading frame of 1674 nt, and a 3' untranslated region of 1138 nt. SA-36 cDNA displayed > 99% homology to glucose phosphate isomerase (GPI)/neuroleukin (NLK) mRNA. This surprising homology was confirmed in Western blots demonstrating that mAb A36 reacted specifically with GPI obtained from rabbit muscle and from baker's yeast. Moreover, polyclonal, monospecific antibodies produced against beta-galactosidase/SA-36-3 fusion protein stained human spermatozoa and caused intensive agglutination of these cells in a manner similar to that with the mAb. Taken together, the data presented here demonstrated that mAb A36 cognate sperm surface antigen, encoded by SA-36 cDNA, is a GPI/NLK-like protein involved in sperm agglutination.  相似文献   

15.
The construction and isolation of three recombinant DNAs complementary to different mouse L-cell Mr = 68,000 heat shock protein (hsp68) mRNAs is described. cDNA libraries derived from heat-shocked mouse L-cell poly(A)+ RNA by the vector-linked primer strategy of cDNA synthesis and cloning of Okayama and Berg (Okayama, H., and Berg, P. (1982) Mol. Cell. Biol. 2, 161-170) were screened first with a Drosophila hsp70 heterologous probe and subsequently with a cDNA probe isolated from the first screening. Positive clones were assigned to one of three sets based on their restriction map, and the largest member of each group was chosen for further analysis. All three cDNAs hybrid-select mRNA for the mouse major heat shock protein (hsp68) as assayed by in vitro translation and hybridize preferentially to two heat shock-induced hsp68 mRNAs on Northern blots. The coding regions of the cDNAs are almost identical and closely resemble other HSP70 genes but the 3' untranslated regions diverge considerably. Differences in the lengths of the untranslated regions are responsible for the two different sized induced hsp68 mRNAs in mouse L-cells. The physical maps of these cDNA clones and the limited number of mouse genomic DNA fragments detected on Southern blots suggest that there are at least three closely related heat shock-inducible members of the mouse HSP70 gene family. None of the cloned cDNAs are derived from the two related cognate genes known to be present in the mouse genome.  相似文献   

16.
The mgtB locus codes for one of three distinct Mg2+ transport systems of Salmonella typhimurium. The system encoded by the mgtB locus mediates Mg2+ influx only. The nucleotide sequence of a 4.6-kilobase fragment of DNA carrying mgtB has been determined. Two open reading frames were apparent. The most 5' (mgtC) could encode a hydrophobic protein of up to 25 kDa depending on which translation starts are used. A plasmid carrying this region downstream from a phage T7 promoter expresses a 22.5-kDa protein. The second open reading frame encoded a 101-kDa polypeptide (MgtB) consistent with our previous observation that a plasmid carrying the mgtB locus expresses a 102-kDa protein in maxicells. Insertions into either open reading frame abolished the ability of the plasmid to relieve the requirement for added Mg2+ and to restore Mg2+ uptake to a Mg2+ transport-deficient strain of S. typhimurium. The predicted amino acid sequence of MgtC showed no similarity to any other known protein. In contrast, the predicted sequence of MgtB indicated that it is a member of the family of cation transport P-type ATPases. Strikingly, however, MgtB was significantly more similar to eukaryotic Ca2(+)-ATPases than to prokaryotic P-type ATPases or other classes of eukaryotic P-type ATPases such as the Na+,K(+)-ATPase. MgtB is most closely related to Ca2(+)-ATPases of mammalian sarcoplasmic reticulum and yeast. A number of features of the Ca2(+)-ATPases thought to be important for cation transduction across the membrane are present in MgtB but not in other prokaryotic members of this enzyme family. Unlike the Ca2(+)-ATPases, however, which mediate efflux of cation from the cytosol, MgtB mediates influx of cation into the cytosol.  相似文献   

17.
18.
The sodium-dependent neutral amino acid transporter type 2 (ASCT2) was recently identified as a cell surface receptor for endogenously inherited retroviruses of cats, baboons, and humans as well as for horizontally transmitted type-D simian retroviruses. By functional cloning, we obtained 10 full-length 2.9-kilobase pair (kbp) cDNAs and two smaller identical 2.1-kbp cDNAs that conferred susceptibility to these viruses. Compared with the 2.9-kbp cDNA, the 2.1-kbp cDNA contains exonic deletions in its 3' noncoding region and a 627-bp 5' truncation that eliminates sequences encoding the amino-terminal portion of the full-length ASCT2 protein. Although expression of the truncated mRNA caused enhanced amino acid transport and viral receptor activities, the AUG codon nearest to its 5' end is flanked by nucleotides that are incompatible with translational initiation and the next in-frame AUG codon is far downstream toward the end of the protein coding sequence. Interestingly, the 5' region of the truncated ASCT2 mRNA contains a closely linked series of CUG(Leu) and GUG(Val) codons in optimal consensus contexts for translational initiation. By deletion and site-directed mutagenesis, cell-free translation, and analyses of epitope-tagged ASCT2 proteins synthesized intracellularly, we determined that the truncated mRNA encodes multiple ASCT2 isoforms with distinct amino termini that are translationally initiated by a leaky scanning mechanism at these CUG and GUG codons. Although the full-length ASCT2 mRNA contains a 5'-situated AUG initiation codon, a significant degree of leaky scanning also occurred in its translation. ASCT2 isoforms with relatively short truncations were active in both amino acid transport and viral reception, whereas an isoform with a 79-amino acid truncation that lacked the first transmembrane sequence was active only in viral reception. We conclude that ASCT2 isoforms with truncated amino termini are synthesized in mammalian cells by a leaky scanning mechanism that employs multiple alternative CUG and GUG initiation codons.  相似文献   

19.
Distinct 6-phosphofructo-2-kinase (PFK-2)/fructose 2,6-bisphosphatase (FBPase-2) cDNAs were cloned from bovine heart, showing that PFK-2/FBPase-2 gene B, which contains 16 exons, codes for at least five mRNAs. Three of them (B1, B2, B4) could encode the 58,000-Mr isozyme. In B2 mRNA, exon 15 encodes four more residues than in Bl. In B4 mRNA, exon 15 encodes six more residues than in B1, butexon 16 (20 residues) is missing. B3 mRNA corresponds to the 54,000-Mr isozyme. It lacks exon 15 and also differs from the other mRNAs in the 5' noncoding region. B5 mRNA encodes a truncated form. When expressed in E. coli, the recombinant isoforms corresponding to all these mRNAs except B5 exhibited PFK-2 activity.  相似文献   

20.
Summary Recently, we characterized a cDNA clone that encodes a human brain adenylyl cyclase (HBAC1). In the present study, we identified a second population of mRNA suspected to encode a new brain adenylyl cyclase (HBAC2). The amino acid sequence of HBAC2 displays significant homology with HBAC1 in the highly conserved adenylyl cyclase domain (250 aminio acids), found in the 3 cytoplasmic domain of all mammalian adenylyl cyclases. However, outside this domain, the homology is extremely low, suggesting that the corresponding mRNA originates from a different gene. We report here the first chromosomal localization of the adenylyl cyclase genes determined by in situ hybridization of human metaphase chromosomal spreads using human brain cDNA probes specific for each mRNA. The probe corresponding to HBAC1 exhibited a strong specific signal on chromosome 8q24, with a major peak in the band q24.2. In contrast, the HBAC2 probe hybridized to chromosome 5p15, with a major peak in the band p15.3. The two cDNAs hybridized at the two loci without any cross reactivity. Thus, in human brain, a heterogeneous population of adenylyl cyclase mRNAs is expressed, and the corresponding genes might be under the control of independent regulatory mechanisms.Abbreviations C catalytic part of adenylyl cyclase - BBAC bovine brain - HBAC human brain - ROAC rat olfactory - RLAC rat liver - RTAC rat testis adenylyl cyclase - G guanine nucleotide GTP binding protein (s, stimulatory; i, inhibitory)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号