首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:8,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

2.
Some factors affecting the mineralization of organic sulphur in soils   总被引:6,自引:0,他引:6  
Summary Factors affecting the release of sulphate from a number of eastern Australian soils were studied.All of the soils released sulphate when dried. The amounts released were influenced by the manner in which the soil was dried. Air-drying in the laboratory at 20°C released least sulphate.Sulphate was mineralized in all soils by incubation at 30°C but the amounts mineralized could not be related to soil type or any single soil property. The ratio of nitrogen mineralized: sulphur mineralized varied widely between soils and was generally appreciably greater than the ratio of total nitrogen: organic sulphur in the soils.A rapid flush of mineralization of both sulphur and nitrogen took place when some of the soils were rewetted and incubated after they had been dried in the laboratory and stored for 4 to 5 months. Following this, the rate of mineralization was similar to that in the original undried soil. During this flush, the enhancement of sulphur mineralization was relatively greater than that of nitrogen so that the ratio of nitrogen mineralized: sulphur mineralized was considerably smaller than that during later phases of the incubation or that of the original moist soil. Soils collected after they had remained dry in the field for a similar period of time did not show this type of mineralization although they had initially done so when collected moist and air-dried in the laboratory.The effects of temperature, soil moisture, toluene and formaldehyde, and the addition of calcium carbonate to soils on the mineralization of sulphur were similar to their effects on the mineralization of nitrogen.  相似文献   

3.
温度对不同粘粒含量稻田土壤有机碳矿化的影响   总被引:16,自引:0,他引:16  
模拟了亚热带地区3种不同粘粒含量的水稻土(砂壤土、壤粘土、粉粘土)在5种温度(10、15、20、25和30℃)下的有机碳(SOC)矿化特征,分析SOC矿化对温度变化的响应.结果表明:在160d的培养期内,温度对3种水稻土SOC矿化量的影响有一定差异,30℃时砂壤土、壤粘土和粉粘土SOC矿化量分别是10℃时的3.5、5.2和4.7倍.在较低温度(≤20℃)下,SOC矿化速度较低且相对稳定;在较高温度(≥25℃)下,前期SOC矿化速度较高,随着培养时间的延长逐渐降低,并趋于稳定.3种水稻土SOC矿化的温度系数(Q10)随培养时间出现波动,砂壤土的Q10平均值最低,为1.92,壤粘土和粉粘土的Q10平均值较接近,分别为2.37和2.32;3种土壤矿化速率常数(k)与温度呈极显著的指数相关(P<0.01).3种水稻土有机碳矿化对温度变化的响应敏感度依次为壤粘土>粉粘土>砂壤土.  相似文献   

4.
Field experiments were conducted under flooded soil conditions using Maahas clay amended with urea and rice straw-sesbania mixtures during the wet and dry seasons. Parallel laboratory incubation tests were done. The objectives were 1) to determine N mineralization patterns and establish the relationship between mineralization parameters and either N availability or grain yield, and 2) to correlate the results of organic N mineralization studies in the laboratory with data from field experiments. The N mineralization patterns of flooded soils in the laboratory followed a logistic function. In laboratory studies, mineralization potential was positively correlated with extractable soil NH4 +-N at the end of the incubation period (cumulative available N). Likewise, mineralization potential calculated from laboratory studies was positively correlated with N uptake and grain yield from field studies. Extractable (NH4 ++NO3 )-N in the field correlated positively with extractable NH4 +-N in the laboratory. The extractable NH4 +-N from laboratory incubations at 14 days after transplanting, panicle initiation, and maturity was also highly and positively correlated with grain yield from field experiments.  相似文献   

5.
三江平原典型小叶章湿地土壤氮素净矿化与硝化作用   总被引:6,自引:2,他引:4  
2004年6月—2005年7月,利用PVC顶盖原位培育法研究了三江平原典型草甸小叶章湿地和沼泽化草甸小叶章湿地土壤(0~15cm)无机氮库、净矿化/硝化速率动态、影响因素及年净矿化/硝化量.结果表明:两种湿地土壤的无机氮均呈明显的动态变化特征,其NH4 -N、NO3-N含量均表现为典型草甸小叶章湿地>沼泽化草甸小叶章湿地.两种湿地土壤的净矿化/硝化速率均呈明显的波动变化,生物固持作用、反硝化作用以及雨季较多降水是导致净矿化/硝化速率出现负值的主要原因.温度、降水、土壤有机质含量、C/N和pH是引起二者土壤无机氮库、净矿化/硝化速率存在明显差异的重要原因.典型草甸小叶章湿地的年净矿化量(19.41kg·hm-2)、年净硝化量(4.27kg·hm-2)以及净硝化量占净矿化量的百分比(22.00%)明显高于沼泽化草甸小叶章湿地(5.51kg·hm-2、0.28kg·hm-2和5.08%),说明前者的氮有效性以及维持可利用氮的能力明显高于后者.  相似文献   

6.
长效碳酸氢铵对土壤硝化-反硝化过程和NO与N2O排放的影响   总被引:3,自引:0,他引:3  
Compared with ammonium bicarbonate(AB), the effect of modified ammonium bicarbonate (MAB) on nitrification and denitrification processes and NO and N2O emissions in a clay soil (C soil) and a loam soil (L soil) was studied in laboratory (25 degrees C and 50% WFPS). The inhibition effect of DCD from MAB on nitrification was relatively small in C soil, but considerably great in L soil. Compared with AB, MAB extended 7 days and 33 days for retaining NH4+. During 15 days, the NO emission from C soil and L soil respectively accounted for 0.60% and 1.06% of applied N under AB application (100 micrograms N.g-1), which were as 30 and 12 times as the N2O emission from corresponding soils. After applying MAB, the emission of NO from C soil and L soil decreased by 67% and 95%, and the emission of N2O decreased by 64% and 95%, respectively. After 39 days of aerobic incubation, then anaerobically flooded incubation with nitrate addition (200 micrograms KNO3-N.g-1) for 7 days, the total loss of denitrification in MAB in L soil was 50% less, and N2O emission was 113% more than in AB in same soil.  相似文献   

7.
以黄土高原南部17年长期定位试验不同处理土壤为研究对象,研究了不同肥料处理及撂荒条件下土壤氮素矿化特性、灭菌与不灭菌条件下不同肥力土壤对施入外源硝态氮转化的影响.结果表明:氮磷钾化肥和有机肥配施(MNPK)及长期撂荒处理显著提高了土壤有机质和全氮含量以及土壤氮素矿化量和矿化率;氮磷钾化肥(NPK)处理虽然提高了土壤无机氮含量,但对土壤有机质、全氮、土壤氮素矿化量和矿化率的影响相对较小.高温高压灭菌显著增加了土壤铵态氮含量,但对不同处理土壤硝态氮含量无明显影响;在灭菌土壤培养过程中,土壤铵态氮含量呈显著增加趋势.同一土壤类型,不论灭菌与否,培养过程中施入土壤的硝态氮含量保持相对稳定,说明在本研究培养条件下,生物因素和非生物因素对外源硝态氮在土壤中的转化无明显影响.  相似文献   

8.
Winter climate change is an important environmental driver that alters the biogeochemical processes of forest soils. The decrease in snowpack amplifies soil freeze–thaw cycles and decreases the snowmelt water supply to soil. This study examined how snow decrease affects nitrogen (N) mineralization and nitrification in forest soil in northern Japan by conducting an in situ experimental snowpack manipulation experiment and a laboratory incubation of soil with different moisture, temperature and freeze–thaw magnitudes. For the incubation studies, surface mineral soil (0–10 cm) was collected from a cool-temperate natural mixed forest and incubated using the resin core method during the winter. In the field, there were two treatments: 50 and 100 % snow removal and control plots. The increase in the soil freeze–thaw cycle increased net N mineralization and marginally decreased the net nitrification in soil. The dissolved organic carbon (DOC) and DOC/DON ratio in soil increased with the decrease in snowpack especially during the snow melt period. These results suggested that the change in substrate quality by the increase in freeze–thaw cycles caused the significant enhancement of microbial ammonium production in soil. The lower soil moisture and higher gross immobilization of inorganic N by soil microbes may be maintaining the slow net nitrification and low nitrate leaching in freeze–thaw cycles with less snowpack. The results indicate that winter climate change would strongly impact N biogeochemistry through the increase in ammonium availability in soil for plants and microbes, whereas it would be unlikely that nitrate loss from surface soil would be enhanced.  相似文献   

9.
Nitrogen (N) mineralization is a spatially variable and difficult component of the N cycle to quantify accurately under field conditions. Net N-mineralization was compared by direct measurement, indirect estimate, and laboratory incubation for a restored tallgrass prairie and for deficiently and optimally N-fertilized, no-tillage (NT) and chisel-plowed (CP) maize (Zea mays L.) agroecosystems on Plano silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudoll) in Wisconsin, USA. Four years of in-situ field measurements using an incubated-soil-core/ion-exchange-resin-bag technique showed that land use significantly affected net N-mineralization. Net N-mineralization was consistently smaller in the restored prairie than in the maize agroecosystems and typically larger in the CP than in the NT maize agroecosystems. Three independent methods for indirectly estimating annual net N-mineralization (i.e., N budget residual, deficiently N-fertilized plant N uptake, and profile-scaled in-situ field measurements) were relatively consistent at capturing land-use and tillage effects on net N-mineralization. Laboratory incubation and periodic leaching of Fall-sampled soils demonstrated that both mineralized N and labile C were co-limiting factors influencing N-mineralization in agricultural soils and generally supported field measurements by showing a significant difference in net N-mineralization with and without added fertilizer-N.  相似文献   

10.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002.  相似文献   

11.
Summary Incubation studies were carried out to investigate the release of sulphur and nitrogen in West Indian soils. Sulphur and nitrogen released or fixed were estimated at 10 days intervals up to 60 days incubation period.All the soils released sulphate when incubated at 30°C. A rapid initial flush of mineralization of both sulphur and nitrogen took place in Cocal fine sand and Montreal sandy loam. In Piarco sandy clay loam and Mayaro sandy loam sulphur mineralization was not accompanied by a concomitant mineralization of nitrogen. An inconsistent pattern of release of sulphur and nitrogen was noticed in Montserrat clay, Akers sandy clay loam, Bellevue sandy clay loam and Soufriere cindery gravelly loamy sand.The release of sulphur does not appear to be related to the total amount of carbon, nitrogen or sulphur. Nitrogen mineralized was significantly correlated with total nitrogen and total sulphur. The correlation between organic matter and nitrogen mineralized was highly significant (r=0.87**) whereas with sulphur mineralized it did not reach significance. This suggests that nitrogen and sulphur are not mineralized at the same rate in these soils.  相似文献   

12.
Summary The transformation of urea and ammonium sulphate in Ladwa sandy loam and Balsamand sand was studied in laboratory. Urea took at least one week in sandy loam and 2 weeks in sandy soils to hydrolyse completely. The process of hydrolysis was faster in finer soil with high organic matter than in coarse soil having low organic matter. There was no nitrification upto 3 days in sandy loam and upto 7 days in sandy soils, respectively, but there was immobilization of NO3-N during these initial periods. The NO3-N content at the end of incubation period (35 days) was more in case of urea than in case of ammonium sulphate treated samples in sandy loam soil and reverse was true in sandy soil. The hydrolysis of urea did not follow zero or first order kinetics as proposed in previous studies.  相似文献   

13.
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental factors are still poorly understood. The present study aims at comparing the capacity of AOA and AOB to momentarily respond to N input and increased soil moisture in two contrasting forest soils. Soils from the pristine Rothwald forest and the managed Schottenwald forest were amended with either NH(4)(+)-N or NO(3)(-)-N and were incubated at 40% and 70% water-filled pore space (WFPS) for four days. Nitrification rates were measured and AOA and AOB abundance and community composition were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP) analysis of bacterial and archaeal amoA genes. Our study reports rapid and distinct changes in AOA and AOB abundances in the two forest soils in response to N input and increased soil moisture but no significant effects on net nitrification rates. Functional microbial communities differed significantly in the two soils and responded specifically to the treatments during the short-term incubation. In the Rothwald soil the abundance and community composition of AOA were affected by the water content, whereas AOB communities responded to N amendment. In the Schottenwald soil, by contrast, AOA responded to N addition. These results suggest that AOA and AOB may be selectively influenced by soil and management factors.  相似文献   

14.
Whitmore  A.P.  Groot  J.J.R. 《Plant and Soil》1997,192(2):237-247
The leaves and crowns from 15N-labelled sugar beets were incubated in either a silty clay loam or sand soil for almost one year. Four additions of fresh, chopped residues mixed with soil were tested: 15N-labelled leaves alone, 15N-labelled leaves plus unlabelled crowns, unlabelled leaves plus 15N-labelled crowns, and 15N-labelled crowns alone; a control with no addition was also incubated. The C:N ratio of the leaves was 11 and that of the crowns 40. Incubations were carried out in pots kept at 20 °C and optimal moisture conditions. The leaves mineralized N from the start of the experiment but the addition of crowns to soil at first caused immobilization of nitrogen followed eventually by mineralization after 6 or 12 weeks depending on soil type. The extra amounts of mineral N found in soil at the end of the experiment where additions were made corresponded to the sum of the background mineralization and the addition; no priming effects were encountered. Very slight differences only were found between the initial rates of mineralization of C in all of the treatments. Although there was also little difference between the sand and silty clay loam soils in the direct mineralization of nitrogen from the sugar beet leaves, where N was first immobilized (i.e. from crowns or a mixture) re-release of N took place more quickly in the sand soil. The total recovery of15 N found in soils after 24 weeks incubation ranged from 70% to 90% with least being lost from the sugar-rich but N-deficient crowns. Where leaves plus crowns were incubated together both residues contributed to the microbial biomass N.In practice, immobilization of this magnitude and duration (expressed as a temperature sum) could exceed the growth period of a spring sown crop. The actual immobilization found in any one field is likely to depend on the C:N ratio of the residues and could account for much of the variation in the residual benefit of sugar beet residues reported in the literature.  相似文献   

15.
We investigated the effects of changes in soil C and N availability on N mineralization, nitrification, denitrification, NH(3) volatilization, and soil respiration in the Mojave Desert. Results indicate a C limitation to microbial N cycling. Soils from underneath the canopies of Larrea tridentata (DC.) Cov., Pleuraphis rigida Thurber, and Lycium spp. exhibited higher rates of CO(2 ) flux, lower rates of NH(3) volatilization, and a decrease in inorganic N (NH(4)(+)-N and NO(3)(-)-N) with C addition. In addition to C limitation, soils from plant interspaces also exhibited a N limitation. Soils from all locations had net immobilization of N over the course of a 15-day laboratory incubation. However, soils from interspaces had lower rates of net nitrification and potential denitrification compared to soils from under plant canopies. The response to changes in C availability appears to be a short-term increase in microbial immobilization of inorganic N. Under controlled conditions, and over a longer time period, the effects of C and N availability appear to give way to larger differences due to spatial location. These findings have implications for ecosystems undergoing changes in soil C and N availability due to such processes as desertification, exotic species invasions, or elevated atmospheric CO(2) concentration.  相似文献   

16.
季节性冻融期间川西亚高山/高山森林土壤净氮矿化特征   总被引:3,自引:0,他引:3  
气候变暖情景下季节性冻融格局的改变可能显著影响高寒森林土壤氮素矿化过程.本文采用原状土壤移位培养的方法,以海拔梯度形成的温度差异模拟气候变暖,研究了川西亚高山/高山森林在生长季节和季节性冻融期间土壤的净氮矿化量和净氮矿化速率.结果表明: 在川西亚高山/高山森林,土壤铵态氮和硝态氮含量均表现为从生长季节至冻结初期明显下降,完全冻结期明显增加,而在融化初期明显降低的变化过程.季节性冻融期土壤的净氮矿化量和净氮矿化速率显著低于生长季节,并且出现明显的氮素固持现象.与低海拔相比,中海拔森林土壤的氮素固持作用相对较大,高海拔相对较小,可能与不同海拔梯度土壤温度变化及引起的冻融循环密切相关.在生长季节,土壤净氮矿化量和矿化速率均随海拔的降低呈明显增加趋势,尤其在低海拔处土壤的氮素矿化作用最为强烈.在气候变暖背景下,温度的增加明显促进了生长季节土壤氮素矿化,并且通过提高冻融循环频次、缩短冻结时间来影响土壤氮素矿化速率.这一过程可能受到微环境的影响.  相似文献   

17.
The effect of incorporating cattle slurry in soil, either by mixing or by simulated injection into a hollow in soil, on the ryegrass uptake of total N and 15NH4 +-N was determined in three soils of different texture. The N accumulation in Italian ryegrass (Lolium multiflorum L.) from slurry N and from an equivalent amount of NH4 +-N in (15NH4) SO4 (control) was measured during 6 months of growth in pots. After this period the total recovery of labelled N in the top soil plus herbage was similar in the slurry and the control treatments. This indicated that gaseous losses from slurry NH4 +-N were insignificant. Consequently, the availability of slurry N to plants was mainly influenced by the mineralization-immobilization processes. The apparent utilization of slurry NH4 +-N mixed into soil was 7%, 14% and 24% lower than the utilization of (NH4)2SO4-N in a sand soil, a sandy loam soil and a loam soil, respectively. Thus, the net immobilization of N due to slurry application increased with increasing soil clay content, whereas the recovery in plants of 15N-labelled NH4 +-N from slurry was similar on the three soils. A parallel incubation experiment showed that the immobilization of slurry N occurred within the first week after slurry application. The incorporation of slurry N by simulated injection increased the plant uptake of both total and labelled N compared to mixing the slurry into the soil. The apparent utilization of injected slurry NH4 +-N was 7% higher, 8% lower and 4% higher than the utilization of (NH4)2SO4-N in the sand, the sandy loam and the loam soil, respectively. It is concluded that the spatial distribution of slurry in soil influenced the net mineralization of N to the same degree as did the soil type.  相似文献   

18.
Summary Bacteria were counted and the nitrogen mineralized was measured in a sandy loam, a clay loam, a clay soil and a humic clay by incubating the agar medium used for the countings and the soils (a) in petri dishes at 29°C in the atmosphere of the laboratory, (b) in petri dishes buried in a sandy loam and (c) in petri dishes buried in a sandy loam enriched with one per cent of lucerne meal. Most bacteria were found in treatment (a) and least in treatment (c). In some cases treatment (c) stimulated mineralization of nitrogen. However, the results obtained are still inconclusive. In the sandy loam, clay loam and clay soil fewer protein decomposers were found after 6 weeks with treatment (c) than with treatments (a) or (b). Compared with treatment (a) fewer starch decomposers were found in treatment (c) only in the clay loam and clay soil.  相似文献   

19.
设置60%和90%WHC两种土壤水分条件,并添加凋落物过滤液、剩余残渣和丙氨酸,进行为期36 d的室内培养(25 ℃),研究了凋落物中水溶性有机物和残渣对土壤氮素转化的影响.结果表明: 在60%和90%WHC条件下,丙氨酸在土壤中迅速矿化,该处理的土壤铵态氮(NH4+-N)含量分别比对照显著提高5.4%~44.7%和16.1%~41.3%,净氮矿化和氨化速率在培养前期也高于对照,而凋落物过滤液和残渣添加处理则降低了土壤NH4+-N含量,且残渣的降幅大于过滤液.试验期间,土壤硝态氮(NO3--N)含量呈直线增长趋势,培养结束时60%WHC条件下NO3--N含量显著高于90%WHC.土壤水分含量增多不利于土壤有机质的矿化;90%WHC条件下可溶性有机碳(SOC)含量明显低于60%WHC,而土壤氧化亚氮(N2O)排放量比60%WHC提高1.5~63.0倍,且在60%WHC条件下凋落物残渣添加处理显著促进了土壤N2O的排放.凋落物在分解过程中的可溶性物质和剩余物对土壤氮的影响存在差异,且这种差异随分解而发生动态变化.  相似文献   

20.
凋落物输入可显著影响土壤有机碳(SOC)矿化速率,但添加不同化学性质叶凋落物对土壤有机碳矿化释放CO2及激发效应的影响及其机理仍不清楚。本研究将亚热带6种树种13C标记的叶凋落物添加至天然次生林0~10 cm原位土柱中,比较不同树种叶凋落物添加对土壤总CO2、外源凋落物和土壤来源CO2释放速率和累积量以及激发效应的影响,并量化叶凋落物化学性质与土壤CO2释放累积量、激发效应的相关关系。结果表明: 添加叶凋落物能够显著提高土壤总CO2和土壤来源CO2释放量,存在显著正激发效应,激发效应值为68%~128%。不同树种叶凋落物添加对土壤有机碳矿化和激发效应的影响存在显著差异。Pearson相关分析和逐步多元线性回归分析发现,凋落物来源CO2释放累积量与叶凋落物C、P和纤维素含量呈显著负相关,而土壤来源CO2释放量与叶凋落物C:N和木质素:N呈显著正相关。综上,不同化学性质的叶凋落物对土壤有机碳矿化和激发效应的影响存在异质性,在亚热带地区森林类型转变过程中营造具有高质量叶凋落物的人工林将有助于减少森林土壤碳损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号