首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Autosomal dominant osteogenesis imperfecta (OI) is a heterogeneous group of disorders. Molecular haplotypes associated with the pro alpha 2(I) gene of human type I procollagen were used for genetic linkage studies in a group of 10 families with OI. The clinical phenotypes of the families studied were those of OI type I and OI type IV. Evidence for linkage was highly suggestive in the four families with OI type IV (Z = 3.91 for theta = 0). In contrast, little or no indication for linkage was found in the six families with OI type I (Z = .055 for theta = .415). Heterogeneity between the two groups of families was highly significant (chi 2 = 11.14, P = .0008), suggesting that at least two separate gene defects may be the cause of the autosomal dominant forms of OI.  相似文献   

2.
3.
Broad boned lethal osteogenesis imperfecta is a severely crippling disease of unknown cause. By means of recombinant DNA technology a 300 base pair deletion in an alpha 1(I)-like collagen gene was detected in six patients and four complete parent-child groups including patients with this disease. One from each set of the patients'' clinically unaffected parents also carried the deletion, implying that affected patients were genetic compounds. The study suggests that prenatal diagnosis should be possible with 100% accuracy in subjects without the deletion and with 50% accuracy in those who possess it (who would be either heterozygous--normal, or affected with the disease).  相似文献   

4.
A codon frameshift mutation caused by a single base (U) insertion after base pair 4088 of prepro alpha 1(I) mRNA of type I procollagen was identified in a baby with lethal perinatal osteogenesis imperfecta. The mutation was identified in fibroblast RNA by a new method that allows the direct detection of mismatched bases by chemical modification and cleavage in heteroduplexes formed between mRNA and control cDNA probes. The region of mismatches was specifically amplified by the polymerase chain reaction and sequenced. The heterozygous mutation in the amplified cDNA most likely resulted from a T insertion in exon 49 of COL1A1. The frameshift resulted in a truncated pro alpha 1(I) carboxyl-terminal propeptide in which the amino acid sequence was abnormal from Val1146 to the carboxyl terminus. The propeptide lacked Asn1187, which normally carries an N-linked oligosaccharide unit, and was more basic than the normal propeptide. The distribution of cysteines was altered and the mutant propeptide was unable to form normal interchain disulfide bonds. Some of the mutant pro alpha 1(I)' chains were incorporated into type I procollagen molecules but resulted in abnormal helix formation with over-hydroxylation of lysine residues, increased degradation, and poor secretion. Only normal type I collagen was incorporated into the extracellular matrix in vivo resulting in a tissue type I collagen content approximately 20% of that of control (Bateman, J. F., Chan, D., Mascara, T., Rogers, J. G., and Cole, W. G. (1986) Biochem. J. 240, 699-708).  相似文献   

5.
A cDNA for the pro alpha 2 chain of human type I collagen has been recently cloned and amplified. We have used this specific probe to identify the human chromosome carrying the pro alpha 2(I) collagen gene. The DNA from 17 independent human/hamster and human/mouse somatic cell hybrids was digested by Eco RI and the restriction pattern analyzed in Southern blot experiments, using the 32P-labeled cDNA as a hybridization probe. The gene coding for the pro alpha 2 collagen subunit could be unambiguously assigned to human chromosome 7. All the other chromosomes, including chromosome 17, were excluded.  相似文献   

6.
A number of overlapping cDNA clones, covering 5.2 kb of sequences which code for the human pro alpha 2(V) collagen chain, have been isolated. Analysis of the structural data have indicated a close evolutionary kinship between the pro alpha 2(V) chain and the major fibrillar collagen types. Isolation and analysis of an 8 kb genomic fragment has further supported this notion by revealing a homologous arrangement of nine triple-helical domain exons. These studies have therefore provided conclusive evidence which categorizes the Type V collagen as a member of the Group 1 molecules, or fibrillar-forming collagens.  相似文献   

7.
Summary A 300 base pair deletion near the 3-end of the gene encoding Type II (cartilage) collagen has been implicated in the pathogenesis of perinatal lethal osteogenesis imperfecta. We have found similar deletions occurring at a high frequency in normal Asian Indian and West Indian populations generated by a length polymorphism just beyond the 3-end of the gene. We suggest that this polymorphism provides an alternative explanation of the original results.  相似文献   

8.
Cultured skin fibroblasts from a newborn with the lethal perinatal form of Osteogenesis imperfecta synthesized an over-hydroxylated form of pro alpha 1 (I) chain. The analysis of the CNBr peptides showed that over-hydroxylation occurred all along the molecule.  相似文献   

9.
Multiple 3'' ends of the chicken pro alpha 2(I) collagen gene   总被引:14,自引:12,他引:14       下载免费PDF全文
The precise location of the 3' ends of the chicken pro alpha 2(I) collagen gene have been identified by S1 nuclease protection of overlapping genomic fragments by calvaria poly A containing RNA and size determination of the protected fragments on DNA sequencing gels. The gene ends 300 and 306 bp and 754 and 777 bp from the translation stop codon. The two sets of ends explain the major and minor pro alpha 2(I) collagen mRNAs previously observed, which may result from either RNA polymerase readthrough of the first termination site and/or different processing sites.  相似文献   

10.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

11.
Comparison of the nucleotide sequence and primary structure of murine and human pro alpha 2(I) collagen indicates a high degree of homology: 87% at the nucleotide level and 87% at the amino acid level, with the greatest degree of variability in the amino- and carboxy-pro-peptide domains. The homology is greatest in the triple helical domain, repeating [Gly-X-Y]338, exhibiting 90% homology at the amino acid level, with only X and Y position residue substitutions. The X and Y residues show 86% homology between murine and human pro alpha 2(I) collagen triple helices, with no truly nonconservative substitutions.  相似文献   

12.
13.
The physical proximity of the closely linked pro alpha 2(1)collagen (COL1A2) and erythropoietin (EPO) genes and five loci with no known function was studied by long-range restriction mapping experiments using pulsed-field gel electrophoresis. COL1A2 and D7S64 were found to be within 100 kb of each other, providing a new informative marker for linkage studies with respect to COL1A2. D7S15 and D7S79 were within 350 kb of each other. The physical distance between COL1A2 and EPO was determined to be at least 600 kb. Two CpG rich islands were recognized within 600 kb of COL1A2, suggesting that other genes might lie in the vicinity of COL1A2.  相似文献   

14.
S Aho  V Tate    H Boedtker 《Nucleic acids research》1984,12(15):6117-6125
During the fine structural analysis of the 5' end of the 38 kb chicken pro alpha 2(I) collagen gene, we failed to locate an exon, only 11 bp in size, which had been predicted from the DNA sequence analysis of a cDNA clone complementary to the 5' end of the pro alpha 2(I) collagen mRNA (1). We know report the location of this 11 bp exon, exon 2, at the 5' end of a 180 bp Pst I fragment, 1900 bp 3' to exon 1 and 600 bp 5' to exon 3. Its sequence, ATGTGAGTGAG, is highly unusual in that it contains two overlapping consensus donor splice sequences. Moreover, it is flanked by two overlapping donor splice sequences but only one of the four splice sequences is actually spliced (1). The first half of intron 1 also has an unusual sequence: it is 68% GC, contains 88 CpG dinucleotides and 11 Hpa II sites. The second half is more like other intron sequences in the collagen gene with a GC content of 41%, 19 CpG, and no Hpa II sites. However it contains two sequences with 7 and 9 bp homology to the 14 bp SV40 enhancer core sequence. It is suggested that some part of intron 1 may be involved in regulation.  相似文献   

15.
This study describes a homozygous, G----A transition at the moderately conserved +5 position within the splice donor site of intron 14 in the human alpha 1(I) collagen gene. The mutation reduced the efficiency of normal splice-site selection since the exon upstream of the mutation was spliced alternatively. Moreover, the extent of alternative splicing was sensitive to the temperature at which the mutant cells were grown, suggesting that the mutation directly affected spliceosome assembly. To achieve exon skipping, this effect must be propagated so as to disrupt the selection of a second splice site in the adjacent intron.  相似文献   

16.
We studied tissue and cultured skin fibroblasts from a newborn with the lethal perinatal form of osteogenesis imperfecta born to a mother with the Marfan syndrome and her unrelated husband. Dermis from the infant was thinner and fibril diameter smaller than control; dermal fibroblastic cells had dilated endoplasmic reticulum. His fibroblasts in culture synthesized two different species of pro alpha 1(I) chains in about equal quantity. One chain was normal, the other contained cysteine within the triple-helical portion of the COOH-terminal cyanogen bromide peptide alpha 1(I)CB6. Molecules which contained two copies of the mutant chain formed alpha 1(I)-dimers linked through interchain disulfide bonds. Molecules which contained either one or two mutant chains were delayed in secretion and underwent excessive lysyl hydroxylation and hydroxylysyl glycosylation of all chains in the molecule, probably as a result of delayed triple-helix formation. Molecules containing either one or two copies of the mutant chain melted at 38 degrees C instead of 41 degrees C. The most likely explanation for these findings is that a cysteine is substituted for a glycine in the triple-helical domain of the products of one of the alpha 1(I) alleles. Such a substitution would interfere with triple-helix formation and stability and thus explain 1) the decreased melting temperature, 2) the increased post-translational modification, 3) the altered rate of secretion and accumulation of intracellular material, 4) the increased intracellular degradation of newly synthesized collagen, and 5) the decreased collagen production. Since neither parental cell strain produced the same mutant chain, the findings are best explained by a new mutation in one of the alpha 1(I) genes. The role of the uncharacterized "Marfan" gene in modifying the phenotype in this patient is unclear.  相似文献   

17.
18.
We characterized a de novo 4.5 kilobase pair deletion in the paternally derived alpha 2(I) collagen allele (COL1A2) from a patient with perinatal lethal osteogenesis imperfecta. The intron-to-intron deletion removed the seven exons which encode residues 586-765 of the triple helical domain of the chain. Type I procollagen molecules that contain the mutant pro-alpha 2(I) chain have a lower than normal thermal stability, undergo increased post-translational modification amino-terminal to the deletion junction, and are retained within the rough endoplasmic reticulum. The block to secretion appears to result from improper assembly of the triple helix, apparently a consequence of a disruption of charge-charge interactions between the shortened pro-alpha 2(I) chain and normal pro-alpha 1(I) chains. The lethal effect may be due to decreased secretion of normal collagen and secretion of a small amount of abnormal collagen that disrupts matrix formation.  相似文献   

19.
We report the DNA sequence of a cDNA clone complementary to the 5' end of the chick pro alpha 2(I) mRNA. The sequence enables us to deduce the amino acid sequence of this region, which has been refractory to conventional protein sequencing techniques. Its importance lies in the role of the prepropeptide in secretion, triple helix formation of the mature protein and initiation of fibrillogenesis. We have also located four of the five exons which code for this region on the genome. One exon is only 11bp in size and appears to code exclusively for the signal propeptidase cleavage site. This is an extreme example of an exon defining a functional unit.  相似文献   

20.
Collagen synthesis was examined in skin fibroblasts from a patient with a variant of Ehlers-Danlos syndrome. The relative rate of collagen synthesis to total protein synthesis in the patient's fibroblasts was always one-half of that in fibroblasts from normal controls. Total collagen synthesis, as assessed by quantification of total hydroxyproline, was also significantly lower than that of controls, indicating that the rate of collagen synthesis by the patient's fibroblasts was decreased compared with that by normal fibroblasts. Analysis of procollagen and collagen components showed the absence of the pro alpha 2(I) chain and its derivatives. Dot-blot and Northern-blot analyses showed the patient's fibroblasts to contain less than 10% of the mRNAs for pro alpha 2(I) found in control fibroblasts. In spite of these results, Southern blot analysis of genomic DNA indicated the presence of the same number of genes for the pro alpha 2(I) collagen chain in the patient's fibroblasts as in control fibroblasts, suggesting malfunctioning pro alpha 2(I) collagen genes as the cause for failure of the patient's fibroblasts to synthesize pro alpha 2(I) collagen chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号