首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

The preference for coastal habitats makes the harbour porpoise, Phocoena phocoena, vulnerable to fisheries conflicts and hence prone to die due to entangling in fishing nets. An opportunistic sampling of such casualties (134 individuals) in Norwegian waters was used to assess the genetic population structure of the species by SNP-genotyping at 78 loci. The results of genetic clustering obtained for these individuals failed to identify more than one genetic group. Likewise, the individually-based F did not meet an Isolation-by-Distance pattern, thus supporting the conclusion that harbour porpoise in Norway probably belongs to a single genetic group or population.  相似文献   

2.
We examined polymorphism at 12 microsatelliteloci in 807 harbour porpoises , Phocoenaphocoena, collected from throughout thecentral and eastern North Atlantic to theBaltic Sea. Multilocus tests for allelefrequency differences, assignment tests,population structure estimates (FST) andgenetic distance measures (DLR andDC) all indicate six geneticallydifferentiated populations/sub-populationsafter pooling sub-samples within regions.Harbour porpoises from West Greenland, theNorwegian Westcoast, Ireland, the British NorthSea, the Danish North Sea and the inland watersof Denmark (IDW) are all geneticallydistinguishable from each other. A sample ofharbour porpoises collected off the Dutch coast(mainly during winter) was geneticallyheterogeneous and likely comprised a mixture ofindividuals of diverse origin. A mixed stockanalysis indicated that most of the individualsin this sample (77%) were likely migrantsfrom the British and Danish North Sea.  相似文献   

3.
4.
We used our novel and programmable Porpoise Alarm (PAL, patd.) to synthesize life-like, electronic harbour porpoise communication signals based on those described for captive animals. In the Little Belt, Denmark, we employed PAL (source level 158 ± 1 dB p–p re 1 μPa@1 m; centroid frequency 133 ± 8.5 kHz) to synthesize three aggressive click train types termed “A”, “F3” and “M1” to naive, free-living harbour porpoises. Via theodolite tracking (372 h of total visual effort spread over 10 expeditions) we found that, depending on signal type, porpoises either avoid or become attracted to PAL: Signal types “A” and “F3” are slight deterrents, porpoises increasing minimum range (+23 to 32 m, respectively), whereas “M1” attracts porpoises, reducing range (by ? 29 m). As determined via archival acoustic detectors (AADs), both signals “F3” and “M1” led the animals to significantly intensify their click rate (by +10% and 68%, respectively) while signal “A” led to a significant reduction ( ? 59%). We propose that equipping fishing gear with PAL emitting signal “F3” could potentially reduce porpoise by-catch by increasing (1) awareness through enhanced echolocation and (2) distance to the nets. Detection probability and radius of PAL/AAD tandems could be improved by emitting signal “M1” to focus porpoise echolocation signals on the AAD. The signal may also be useful in luring animals away from hazards, which may be helpful for conservation measures prior to the onset of harmful acoustic activities such as pile-driving, seismic exploration or ammunition clearance.  相似文献   

5.
The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 ± 0.3 s, mean ± SEM) were shorter than field observations, although a few breath-holds of over 40 s were recorded. The mean percentage time spent submerged was 89 ± 0.4%. Relative to similarly-sized terrestrial mammals, the respiratory frequency was low (4.9 ± 0.19 breaths · min−1) but with high tidal volumes (1.1 ± 0.01 l), enabling a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 ± 13.8 ml O2 · min−1) was 1.9-fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min. The peak end-tidal O2 values were related to the length of the previous breath-hold, demonstrating the increased oxygen uptake from the lung for the longer dives. Blood oxygen capacity was 23.5 ± 1.0 ml · 100 ml−1, and the oxygen affinity was high, enabling rapid oxygen loading during ventilation. Accepted: 11 August 1999  相似文献   

6.
The use of acoustic alarms (pingers) has been mandated in several gill net fisheries around the world. Even though pingers have shown to reduce the incidental catch there are still questions to be answered in relation to effective range, habituation and displacement. In the present studies, the vocalization behavior of porpoises was recorded in response to two different pingers, AQUAmark100 (20–160 kHz) and AQUAmark300 (10 kHz). The Scottish experiment included an AQUAmark100 pinger running in on/off cycles. The pinger was placed in an array of acoustic click detectors (C‐PODs) spaced at different distances from the pinger. In Denmark, three experiments were conducted. One had the same AQUAmark100 pinger placed in a C‐POD array. The second and third experiment used an AQUAmark300 pinger running in on/off cycles. Both trial results of the AQUAmark100 revealed significant pinger reduction effects at 0, 200, and 400 m distance; however, the vocalization behavior reveal no signs of habituation. The studies of the AQUAmark300 revealed a significant pinger effect at 0 m distance and either none or 17% reduction at 300 m distance. At one station, however, habituation effects were found indicated by an increase in clicks over time. These results are important in relation to pinger use and thus fisheries management.  相似文献   

7.
Epiphyseal development was investigated on X‐rays of flippers from 158 harbour porpoises from Danish waters. Development followed a proximodistal pattern similar to what is known in other cetacean species. Ossification of epiphyses was rare in the phalanges of the first and fifth digits and in the more distal phalanges of the second, third and fourth digits. Along with the morphology of the first metacarpal and the more distal phalanges this suggested paedomorphosis relative to delphinids. Male and female porpoises showed similar progression of epiphyseal development until approximately the sixth year. From then on, female porpoises showed more progressed development than males. This suggests a higher level of paedomorphosis in the male porpoise. The mechanism behind phocoenid paedomorphosis seems to be progenesis, probably as an adaptation towards a high reproductive rate relative to the delphinids.  相似文献   

8.
This study investigated the functional morphology of the blubber that forms the caudal keels of the harbor porpoise (Phocoena phocoena). Blubber is a pliant biocomposite formed by adipocytes and structural fibers composed of collagen and elastic fibers. Caudal keels are dorsally and ventrally placed triangular wedges of blubber that define the hydrodynamic profile of the porpoise tailstock. Mechanical tests on carcasses demonstrate that when keels are bent, they strain nonuniformly along their lengths, with highest strains just caudal to the dorsal fin and lowest at the insertion of the flukes. Therefore, caudal keels undergo nonuniform longitudinal deformation while maintaining a stable, triangular cross-sectional shape. Polarizing and transmitted light microscopy techniques were used to investigate blubber's 3D fiber architecture along the length of the dorsal keel. The triangular cross-sectional shape of the keel appears to be maintained by structural fibers oriented to act as tensile stays. The construction of the blubber composite is regionally specific :structural fiber densities and diameters are higher in the relatively stiff caudal region of the keel than in the more deformable cranial keel region. The orientations of structural fibers also change along the length of the keel. Cranially, no fibers are oriented along the long axis, whereas a novel population of longitudinally oriented fibers reinforces the keel at the insertion of the flukes. Thus, differences in the distribution and orientation of structural fibers contribute to the regionally specific mechanical properties of the dorsal keel.  相似文献   

9.
Stranding data and recorded post-mortem findings were studied for 153 harbour porpoises (Phocoena phocoena), which were collected by the Seal Rehabilitation and Research Centre (SRRC; Pieterburen, The Netherlands) in the period 1984–2006. Special consideration was given to ‘by-catch’ listed as a major cause of death. A distinct increase in the numbers of strandings of porpoises along the Dutch coastline has occurred in the recent years of the studied period. This corresponds to the number of porpoises observed in Dutch waters in the same period. Although strandings occurred throughout the entire year, they were most frequent during the January to July period. By-catch and drowning were noted most frequent in the winter and spring seasons (December–April). By-catch and drowned porpoises were found along the entire Dutch coastline. The numbers of animals per area varied depending on the collection efforts. At post-mortem investigation, three probable causes of death were identified most frequently: pneumonia, emaciation and by-catch/drowning. The by-catch and drowning rate was calculated to vary between 7% and 19%. Overall, the percentages obtained from this study appeared to be in line with those established by others in neighbouring countries. Varying fishing techniques are used in Dutch waters. A careful study of the fishing methods involved and close co-operation with fishermen are required to determine effective measures to reduce the by-catch of porpoises.  相似文献   

10.
11.
The unique pattern of small tubercles on the leading edge of the dorsal fins of harbor porpoises (Phocoena phocoena) has been widely noted in the literature, though their structure or function has never been conclusively identified. We examined external morphology and microanatomy of the tubercles for further understanding of the nature of the tubercles. Measurements were taken of height and peak‐to‐peak distance of the tubercles using scaled photographs. Mean tubercle height was standardized as a percentage of the dorsal fin height and ranged from 0.63 to 0.87%. Mean peak‐to‐peak distance ranged from 4.2 ± 2.0 to 5.6 ± 2.0 mm. The microstructure analysis of the dorsal fin leading edge, trailing edge and tubercles revealed an epidermal thickness of 0.7–2.7 mm with the thickest epidermis at the tubercular apex. The epidermis contained three distinct strata (=layers), including the stratum corneum, spinosum, and basale. The stratum corneum was significantly thickened in tubercles, over four times thicker than in the leading or trailing edge of the fin. The stratum spinosum, composed of lipokeratinocytes and lamellar oil bodies, was significantly thinner in the trailing edge than in the other two sites. There was no significant difference in the stratum basale among the three sites. Volume fraction of lipokeratinocytes was significantly higher at the sides of the leading edge and the apex of the tubercles, while volume fraction of lamellar oil bodies was significantly lower at the apex of the tubercles. Though the function of the tubercles is unknown, their position, hardened structure and increased epidermal stratum corneum suggest that they may have hydrodynamic importance. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
14.
Knowing the abundance of a population is a crucial component to assess its conservation status and develop effective conservation plans. For most cetaceans, abundance estimation is difficult given their cryptic and mobile nature, especially when the population is small and has a transnational distribution. In the Baltic Sea, the number of harbour porpoises (Phocoena phocoena) has collapsed since the mid‐20th century and the Baltic Proper harbour porpoise is listed as Critically Endangered by the IUCN and HELCOM; however, its abundance remains unknown. Here, one of the largest ever passive acoustic monitoring studies was carried out by eight Baltic Sea nations to estimate the abundance of the Baltic Proper harbour porpoise for the first time. By logging porpoise echolocation signals at 298 stations during May 2011–April 2013, calibrating the loggers’ spatial detection performance at sea, and measuring the click rate of tagged individuals, we estimated an abundance of 71–1105 individuals (95% CI, point estimate 491) during May–October within the population''s proposed management border. The small abundance estimate strongly supports that the Baltic Proper harbour porpoise is facing an extremely high risk of extinction, and highlights the need for immediate and efficient conservation actions through international cooperation. It also provides a starting point in monitoring the trend of the population abundance to evaluate the effectiveness of management measures and determine its interactions with the larger neighboring Belt Sea population. Further, we offer evidence that design‐based passive acoustic monitoring can generate reliable estimates of the abundance of rare and cryptic animal populations across large spatial scales.  相似文献   

15.
Sixty-five fatty acids were quantified in the blubber of common dolphins (Delphinus delphis, D. capensis) incidentally caught off the coast of southern California. Dolphins were grouped by sex, reproductive status and species, and a blubber sample was collected at a mid-lateral site located caudal to the trailing edge of the dorsal fin. Samples were divided horizontally into inner, middle and outer layers and gradients in fatty acid content (mass percent) were observed across the depth of the blubber. Levels of monounsaturated fatty acids were greatest in the outer layer, whereas levels of saturated and polyunsaturated fatty acids were greatest in the inner layer. Degree of stratification was greatest in sexually mature dolphins. Blubber of sexually immature, but physically mature, male dolphins was also highly stratified, suggesting that this difference may be attributed to differences in diet. Classification and regression tree analysis resulted in the fewest misclassifications when dolphins were grouped by species, possibly indicating that these closely related animals forage on different prey species. Dietary-derived fatty acids were typically selected as splitting criteria in classification and regression tree analyses, suggesting that the observed differences in fatty acid composition between the various groups of dolphins may be attributed to differences in diet.  相似文献   

16.
Fatty acid signature analysis of blubber has been used to study the foraging ecology of some marine mammals. However, species-specific information on fatty acid (FA) deposition, distribution and mobilization is required to develop further the application of FA as trophic markers within the marine environment. Blubber samples were collected from adult female Weddell seals post-parturition and end of lactation, and were divided into inner and outer half sections. We determined the degree to which there was vertical stratification in FA composition, and how this changed over the lactation period. Inner and outer layers of post-parturition blubber cores separated into two distinct groups. Sixty-two per cent of the dissimilarity between the two layers was accounted for by a higher abundance of monounsaturated fatty acids (18:1ω9c and 16:1ω7c) in the outer blubber layer, and more saturated fatty acids (16:0 and 14:0) in the inner layer. By end of lactation, the FA composition of the inner layer was different to post-parturition samples, and 20:5ω3 had the highest fractional mobilization of all FA. In contrast, the proportion of FA in the outer layer did not change, and there was more variability in the fractional mobilization of FA indicating mobilization was not uniform across the blubber layer. Dietary predictions changed considerably when highly mobilized FA were removed from analyses, and predictions were more consistent with previous dietary studies. The lack of uniformity in FA mobilization adds problems to the future use of FASA in dietary predictions, highlighting the need for more detailed information on FA mobilization.  相似文献   

17.
In the southern North Sea, harbour porpoise occurrence increased in recent years after a phase of low abundances during earlier decades. Only very few studies on porpoise presence in the southern German North Sea exist so far. As anthropogenic activities will strongly increase in this part of the North Sea during the next years it is most important to assess population level effects. This study focuses on the analysis of temporal and spatial trends in porpoise density in this area of recent change. Dedicated aerial line-transect distance sampling surveys were conducted in the southern German North Sea between May 2002 and June 2013 to assess porpoise density and distribution. Statistical inferences on porpoise population trends were made using a Markov Chain Monte Carlo (MCMC) technique. Two approaches were chosen to test for a trend in porpoise density and an additional model focused on the change in density of calves. During 55,820 km of survey effort 4377 porpoises including 140 calves were recorded. A significant effect of increasing spatial aggregation from the lower density areas in the south-eastern German Bight to hot spot areas in the western parts was detected. For the western part of the study area a significant increase in porpoise density between 2002 and 2013 was detected. Seasons were significantly different with highest porpoise density in spring and successively decreasing densities in summer and autumn. From 2008 onwards high densities were also observed in summer. Calf density increased during the study period and was significantly higher in the west. On the basis of this extensive and unique data set on porpoise occurrence in the southern German North Sea the findings clearly show that especially the south-western German North Sea serves as habitat of increasing importance for porpoises throughout the last decade. Definite reasons still remain unresolved. Changes in prey abundance or less favourable conditions in other areas could be important factors, which may also have caused a southward shift from high density areas in northern waters. On this baseline, further integrative approaches might lead to a sound understanding of the effect of anthropogenic activities on the future development of porpoise populations.  相似文献   

18.
With the transition from terrestrial to aquatic habitats, cetacean forelimbs have undergone significant modifications in bone morphology and soft tissue distribution. Some, but not all, of these modifications are also demonstrated in other lineages of extant and extinct secondarily aquatic tetrapods. This study examines the ontogenetic pattern of ossification of the manus of the harbor porpoise (Phocoena phocoena), using plain film radiography. Two modifications examined are hyperphalangy (number of phalanges per digit increased beyond the typical mammalian number) and the morphology of delta-shaped bones. Hyperphalangy in Phocoena phocoena is apparent in digits 2 and 3. Phalangeal counts in all digits are variable (sometimes between the right and left flippers of the same individual) and are not necessarily correlated with age. Phalangeal ossification and epiphyseal fusion proceeds along the proximo-distal axis within each digit. In addition, digits 2 and 3 are at a more advanced stage of ossification than more abaxial digits. Delta-shaped bones appear to be a normal stage in the ossification of phalanges in all digits except the third, and may persist in the adult in certain digits. In humans, this morphology is a developmental anomaly usually associated with other malformations, such as polydactyly or syndactyly. Delta-shaped bones in the cetacean manus display a consistent orientation and the process by which they are formed may be similar to that in extinct marine reptiles.  相似文献   

19.
Harbor porpoises (Phocoena phocoena) are commonly observed in Oregon's nearshore marine environment yet knowledge of their ecosystem use and behavior remains limited, generating concerns for potential impacts on this species from future coastal development. Passive acoustic monitoring was used to investigate spatial and temporal variations in the presence and foraging activity of harbor porpoises off the Oregon coast from May through October 2014. Digital monitoring devices (DMONs) were deployed to record acoustic data (320 kHz sample rate) in two neighboring but bathymetrically different locations off the Oregon coast: (1) a site on the 30 m isobath in close proximity (<50 m) to a rocky reef, and (2) a site on the 60 m isobath in an open sandy environment. Data were analyzed with respect to two dynamic cyclic variables: diel and tidal phase. Porpoise presence at the rocky reef site was aligned with the ebb phase of the tidal forcing, while, harbor porpoise presence and foraging at the offshore, sandy bottom site was associated with night‐time foraging. The spatial and temporal patterns identified in this study suggest harbor porpoise habitat use is modulated by specific environmental conditions particular to each site that maximize foraging efficiency.  相似文献   

20.
Harbor porpoises, Phocoena phocoena, off California, comprise four recognized population stocks: Morro Bay (MOR), Monterey Bay (MRY), San Francisco-Russian River (SFRR), and Northern California-Southern Oregon (NCSO). The three southernmost stocks experienced substantial bycatch in gill net fisheries during the 1970s and 1980s. While the SFRR stock received full protection from gill nets in 1989, the MOR and MRY stocks continued to experience at least some bycatch through 2001–2002. We examined long-term population trends for these four harbor porpoise stocks, based on two sets of systematic, aerial line-transect surveys conducted off California during summer/fall of 1986–2017. We applied a Bayesian hierarchical framework to specify a process model of population density and an observation model of porpoise counts during line-transect surveys. Growth rates were estimated for periods with and without bycatch. Posterior distributions indicate the MOR, MRY, and SFRR stocks, respectively, grew at 9.6%, 5.8%, and 6.1% per year after gill nets were largely or fully eliminated for each stock. Abundance off northern California appears stable or slightly increasing. This study provides a first empirical estimate of maximum net reproductive rate for harbor porpoise (at least 9.6%), and demonstrates that porpoise populations can recover from substantial gill net impacts if bycatch is eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号