首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The width of the increment zones in the xylem of Swietenia macrophylla King and Cedrela odorata L. was investigated by dendroecological methods in a primary forest near Aripuanã, Mato Grosso, Brazil (10°09′S, 59°26′W). The annual period of cambial cell division and its intra-annual variation were determined by dendrometer measurements of 30 trees of each species. Tree-ring width chronologies for Swietenia and Cedrela were developed from cross-dated increment curves of 33 out of 47 Swietenia and 51 out of 64 Cedrela trees. Simple correlations were computed between the radial growth increment and monthly precipitation for the period 1890–2000. In Swietenia, cambium activity occurred throughout almost the whole year, but in Cedrela it was restricted to the rainy period from September of the previous year to June of the current year. Tree-rings were formed annually in the juvenile and adult wood of Cedrela, while in Swietenia the annual formation of tree-rings was restricted to the adult wood. Consequently the age of the Swietenia trees could be dated by the tree-rings in good approximation, while age dating of the Cedrela trees was exact. Correlation analyses revealed a significant relationship between the precipitation at the beginning and at the end of the growth season and the width of the increment zones in the adult xylem of Swietenia. In contrast, the width of the growth increment in the xylem of Cedrela was significantly correlated with the precipitation in March and May of the previous growth period.  相似文献   

2.
. The dominant Arctic under-ice amphipod Gammarus wilkitzkii consumes a wide range of food items. The carnivorous feeding activity and energy budget of this large species were studied using three different approaches. Maximum potential ingestion rates Imax estimated from an allometric function taken from the literature and based on body mass were 2.1ǂ.4% of body carbon day-1. Based on respiration measurements, the specific ingestion rates required to meet metabolic demands were lower (1.4ǂ.4% of body carbon day-1). Feeding experiments, in which co-occurring pelagic calanoid (Calanus hyperboreus) or sympagic harpacticoid (Halectinosoma sp.) copepods were offered as prey, yielded actual ingestion rates of 8.0LJ.6% of body carbon day-1 and 0.1ǂ.1% of body carbon day-1, respectively. These results indicate that predatory feeding on pelagic copepods may constitute an important food source for G. wilkitzkii. Abundances of G. wilkitzkii at the ice underside (median: 1.6 ind. m-2), Calanus spp. in the upper metre below the ice (2.6 ind. m-3), and Halectinosoma sp. in the lowermost 2-3 cm of the ice (393.5 ind. m-2) were determined from several multi-year pack-ice floes in the northern Greenland Sea and Fram Strait. Potential predation impact of G. wilkitzkii was estimated by combining information on ingestion rates with population densities. It was very high on Calanus spp. in the under-ice water layer (61.5% of the under-ice standing stock day-1), but comparatively low on Halectinosoma sp. in the bottom of the ice (3.8% of standing stock day-1). The observation of G. wilkitzkii preying on pelagic copepods in the under-ice water layer represents a hitherto unknown but obviously significant process and a new direction in the cryo-pelagic coupling in the Arctic marine ecosystem.  相似文献   

3.
Physiological traits related to water transport were studied in Rhizophora mangle (red mangrove) growing in coastal and estuarine sites in Hawaii. The magnitude of xylem pressure potential (Px), the vulnerability of xylem to cavitation, the frequency of embolized vessels in situ, and the capacity of R. mangle to repair embolized vessels were evaluated with conventional and recently developed techniques. The osmotic potential of the interstitial soil water (?sw) surrounding the roots of R. mangle was c. -2.6LJ.52᎒-3 and -0.4Lj.13᎒-3 MPa in the coastal and estuarine sites, respectively. Midday covered (non-transpiring) leaf water potentials (OL) determined with a pressure chamber were 0.6-0.8 MPa more positive than those of exposed, freely-transpiring leaves, and osmotic potential of the xylem sap (?x) ranged from -0.1 to -0.3 MPa. Consequently, estimated midday values of Px (calculated by subtracting ?x from covered OL) were about 1 MPa more positive than OL determined on freely transpiring leaves. The differences in OL between covered and transpiring leaves were linearly related to the transpiration rates. The slope of this relationship was steeper for the coastal site, suggesting that the hydraulic resistance was larger in leaves of coastal R. mangle plants. This was confirmed by both hydraulic conductivity measurements on stem segments and high-pressure flowmeter studies made on excised leafy twigs. Based on two independent criteria, loss of hydraulic conductivity and proportions of gas- and liquid-filled vessels in cryo-scanning electron microscope (cryo-SEM) images, the xylem of R. mangle plants growing at the estuarine site was found to be more vulnerable to cavitation than that of plants growing at the coastal site. However, the cryo-SEM analyses suggested that cavitation occurred more readily in intact plants than in excised branches that were air-dried in the laboratory. Cryo-SEM analyses also revealed that, in both sites, the proportion of gas-filled vessels was 20-30% greater at midday than at dawn or during the late afternoon. Refilling of cavitated vessels thus occurred during the late afternoon when considerable tension was present in neighboring vessels. These results and results from pressure-volume relationships suggest that R. mangle adjusts hydraulic properties of the water-transport system, as well as the leaf osmotic potential, in concert with the environmental growing conditions.  相似文献   

4.
The uptake and transport of salt ions (Na+, Cl-), macronutrients (K+, Ca2+, Mg2+) and abscisic acid (ABA) response to increasing soil salinity were examined in 2-year-old seedlings of Populus euphratica and a hybrid, P. talassica Kom 2 (P. euphratica + Salix alba L.). Leaf burn symptoms appeared in the hybrid after 8 days of exposure to salinity when soil NaCl concentration increased to 206 mM, whereas P. euphratica exhibited leaf damage after day 21 when soil NaCl exceeded 354 mM. Leaf necrosis was the result of excess salt accumulation since the injury followed an abrupt increase of endogenous salt levels. Compared with the hybrid, P. euphratica exhibited a greater capacity to exclude salt ions from leaves under increasing salinity, especially Cl-. Salt treatment altered nutrient balance of the hybrid, leaf K+, Ca2+ and Mg2+ concentrations significantly declined and the same trends were observed in roots with the exception of K+. Although K+ levels decreased in salinised P. euphratica, increasing salinity did not affect the levels of Ca2+ and Mg2+ in leaves, but did increase the uptake of these nutrients when salt stress was initiated. NaCl-induced increase of ABA concentration in xylem sap [ABA] was observed in the two tested genotypes, however xylem [ABA] increased more rapidly in P. euphratica and a fivefold increase of xylem [ABA] was recorded after the first day of exposure to salt stress. Therefore, we conclude that the increase of Ca2+ uptake may be associated with the rise of ABA, and thus contributes to membrane integrity maintenance, which enables P. euphratica to regulate uptake and transport of salt ions under high levels of external salinity in the longer term.  相似文献   

5.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

6.
Shoot and leaf growth rate as well as shoot hydraulic conductance per unit leaf area (KSL) were measured on three evergreen (Viburnum tinus L., Prunus laurocerasus L., Laurus nobilis L.) and three deciduous (Corylus avellana L., Juglans regia L., Castanea sativa L.) trees growing under the same environmental conditions. The times required to complete shoot growth (27 days for P. laurocerasus to 51 days for V. tinus) and leaf expansion (24 days for C. sativa to 42 days for C. avellana) were very different among the studied species. These species also differed in KSL that ranged between 1.5 and 3.5 e-4 kg s-1 m-2 MPa-1 in C. avellana and C. sativa, respectively, with intermediate values recorded in the other species. A strong, negative and statistically significant correlation was found to exist between KSL and the time required for complete leaf expansion. This suggests that duration of leaf growth is shortened by the high hydraulic efficiency of the shoot. In contrast, no statistically significant relationship was found to exist between KSL and shoot growth rate. Whether a high leaf growth rate can be interpreted as advantageous to plants or it is only an epiphenomenon of the high efficiency in the vertical water transport is discussed.  相似文献   

7.
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.  相似文献   

8.
Stem water content, ice fraction, and losses in xylem conductivity were monitored from November 1996 to October 1997 in an even-aged stand of Pinus contorta (lodgepole pine) near Potlatch, Idaho, USA. A time domain reflectometry (TDR) probe was used to continuously monitor stem water contents and ice fractions. Stem sapwood water contents measured with TDR were not different from water contents measured gravimetrically. The liquid water content of stems ranged from 0.70 m3 m-3 to 0.20 m3 m-3 associated with freezing and thawing of the wood tissue. Ice fraction of the stem varied from 0-75% during the winter suggesting liquid water was always present even at ambient temperatures below -20°C. Shoot xylem tensions decreased through the winter to a minimum of ca. -1.4 MPa in February then increased to -0.4 MPa in May. Shoot xylem tensions decreased during the growing season reaching -1.7 MPa by September. Annually, low shoot water potentials were not correlated to decreases in stem hydraulic conductivity. Xylem conductivity decreased due to cavitation through the winter and was 70% of summer values by March. Decreases in xylem conductivity were correlated to low shoot water potentials and cumulative freezing and thawing events within the xylem. Xylem conductivity increased to pre-winter values by May and no reductions in xylem conductivity were observed during the growing season.  相似文献   

9.
Phytoplankton photosynthesis was measured during spring-summer 1991-1992 in the inner and outer part of the shallow Potter Cove, King George Island. Strong winds characterise this area. Wind-induced turbulent mixing was quantified by means of the root-mean square expected vertical displacement depth of cells in the water column, Zt. The light attenuation coefficient was used as a measure of the influence of the large amount of terrigenous particles usually present in the water column; 1% light penetration ranged between 30 and 9 m, and between 30 and 15 m for the inner and outer cove, respectively. Obvious differences between photosynthetic capacity [P*max; averages 2.6 and 0.6 µg C (µg chlorophyll-a)-1 h-1] and photosynthetic efficiency {!*; 0.073 and 0.0018 µg C (µg chlorophyll-a)-1 h-1 [(µmol m-2 s-1)-1]} values were obtained for both sites during low mixing conditions (Zt from 10 to 20 m), while no differences were found for high mixing situations (Zt>20 m). This suggests different photoacclimation of phytoplankton responses, induced by modifications of the light field, which in turn are controlled by physical forcing. Our results suggest that although in experimental work P*max can be high, wind-induced mixing and low irradiance will prevent profuse phytoplankton development in the area.  相似文献   

10.
The effect of secondary growth on the distribution of the axial hydraulic conductance within the Prunus root system was investigated. Secondary growth resulted in a large increase in both the number (from about 10 to several thousand) and diameter of xylem vessels (from a few micrometres to nearly 150 µm). For fine roots (<3 mm), an increase in root diameter was correlated with a slight increase in the number of xylem vessels and a large increase in their diameter. Conversely, for woody roots, an increase in root diameter was associated with a dramatic increase in the number of xylem vessels, but little or no change in vessel diameter. The theoretical axial conductivity (Kh, m4.s-1.MPa-1) of root segments was calculated with the Poiseuille-Hagen equation from measurements of vessel diameter. Kh measured using the tension-induced technique varies over several orders of magnitude (7.4᎒-11 to 5.7᎒-7 m4.s-1.MPa-1) and shows large discrepancies with theoretical calculated Kh. We concluded that root diameter is a pertinent and useful parameter to predict the axial conductance of a given root, provided the root type is known. Indeed, the relationship between measured Kh and root diameter varies according to the root type (fine or woody), due to differences in the xylem produced by secondary growth. Finally, we show how the combination of branching pattern and axial conductance may limit water flow through root systems. For Prunus, the main roots do not appear to limit water transfer; the axial conductance of the main axes is at least 10% higher than the sum of the axial conductance of the branches.  相似文献   

11.
Thomas Ranius 《Oecologia》2001,126(2):208-215
A species rich beetle fauna is associated with old, hollow trees. Many of these species are regarded as endangered, but there is little understanding of the population structure and extinction risks of these species. In this study I show that one of the most endangered beetles, Osmoderma eremita, has a population structure which conforms to that of a metapopulation, with each tree possibly sustaining a local population. This was revealed by performing a mark-release-recapture experiment in 26 trees over a 5-year period. The spatial variability between trees was much greater than temporal variability between years. The population size was on average 11 adults tree-1 year-1, but differed widely between trees (0-85 adults tree-1 year-1). The population size in each tree varied moderately between years [mean coefficient of variation (C.V.)=0.51], but more widely than from sampling errors alone (P=0.008, Monte Carlo simulation). The population size variability in all trees combined, however, was not larger than expected from sampling errors alone in a constant population (C.V.=0.15, P=0.335, Monte Carlo simulation). Thus, the fluctuations of local populations cancel each other out when they are added together. This pattern can arise only when the fluctuations occur asynchronously between trees. The asynchrony of the fluctuations justifies the assumption usually made in metapopulation modelling, that local populations within a metapopulation fluctuate independently of one another. The asynchrony might greatly increase persistence time at the metapopulation level (per stand), compared to the local population level (per tree). The total population size of O. eremita in the study area was estimated to be 3,900 individuals. Other localities sustaining O. eremita are smaller in area, and most of these must be enlarged to allow long-term metapopulation persistence and to satisfy genetic considerations of the O. eremita populations.  相似文献   

12.
Specific conductivity (ks, m2s-1MPa-1) describes the permeability of xylem and is determined by all aspects of xylem anatomy that create resistance to the flow of water. Here we test the hypothesis that ks is a function of radial and vertical position within the stem, rather than solely a function of cambial age (ring number from the pith), by measuring ks on samples excised from 35-year-old Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco] trees at six heights and two or three radial positions. Sapwood ks decreased from the cambium to the heartwood boundary, and the difference between outer and inner sapwood increased with height in the tree. Beneath the live crown, inner sapwood had 80-90% the ks of outer sapwood, but only 55% just 10 m higher in the stem (about 10 nodes down from the tree top). Outer sapwood ks peaked near the base of the crown and declined toward both the base and top of the stem. These patterns can be explained by two superimposed effects: the effect of cambial age on the dimensions of tracheids as they are produced, and the effect of xylem aging, which may include accumulation of emboli and aspiration of bordered pits. Tracheid lumen diameter and earlywood and latewood density and width, all factors known to vary with cambial age, were measured on different trees of the same age and from the same stand. Lumen diameter increased with cambial age, whereas the proportion of latewood and growth ring density increased after an initial decrease in the first 5 years. Our results suggest that the effect of cambial age on xylem anatomy is not sufficient to explain variation in ks. Instead, physical position (both vertical and radial) in the stem and cambial age must be considered as determinants of conductivity.  相似文献   

13.
Phloem versus xylem water and carbon flow between a developingdaughter cladode (flattened stem segment) and the underlyingbasal cladode of Opuntia ficus-indica was assessed using netCO2 uptake, transpiration, phloem sap concentration, and waterpotential of both organs as well as phloem and apoplastic tracers.A 14-d-old daughter cladode was a sink organ with a negativedaily net CO2 uptake; its water potential was higher than thatof the underlying basal cladode, implicating a non-xylem pathwayfor the water needed for growth. Indeed, the relatively dilutephloem sap (7.44% dry weight) of a basal cladode can supplyall the water (7.1 gd–1) along with photosynthate neededfor the growth of a 14-d-old daughter cladode; about 3% of theimported water flowed back to the basal cladode via the xylem.In contrast, a 28-d-old daughter cladode was a source organwhose water potential was lower than that of its basal cladode,so the xylem can supply the water needed (25.7 g d–1)for its growth; about 6% of the imported water flowed back tothe basal cladode along with photosynthate via the phloem. Thephloem tracer carboxyfluorescein occurred in the phloem of 14-d-olddaughter cladodes after its precursor was applied to basal cladodes.When applied to basal cladodes, the apoplastic tracers sulphorhodamineG (SR) and trisodium 8-hydroxy-1,3,6-pyrenetrisulphonate (PTS)failed to move into 14-d-old daughter cladodes within 5 h, butmoved into 28-d-old daughter cladodes within 2 h. SR and PTSmoved into basal cladodes within 2 h when applied to 14-d-olddaughter cladodes, but not within 5-6 h when applied to 28-d-olddaughter cladodes. The tracer experiments therefore confirmedthe patterns of water flow determined using water and carbonbudgets. Key words: Carboxyfluorescein, phloem-xylem water flow, source-sink water relations, suiphorhodamine G, trisodium 8-hydroxy-1,3,6-pyrenetnsulphonate  相似文献   

14.
The thermal dissipation probe was described in the early 1930s for the demonstration of a volume and mass flow of sap in the conductive elements of the xylem in trees. It was subsequently developed further and is now widely used in physiological ecology including measurements in the field. Thermal dissipation demonstrates the occurrence of sap flow and allows determination of its velocity. Here we report simultaneous continuous measurements of sap flow using the thermal dissipation technique and of transpiration by infrared gas analysis for diurnal and annual cycles in a deciduous and an evergreen oak tree, Quercus robur L. and Quercus turneri Willd., respectively, in a deciduous and an evergreen conifer, Larix decidua Mill. and Pinus griffithii McClell., respectively, and the host/mistletoe consortium of the deciduous linden Tilia mandschurica Rupr. & Max. and the evergreen Viscum album L. We show (1) that in diurnal cycles sap flow closely follows dynamic changes of the rate of transpiration elicited by daily fluctuations of weather parameters (sunshine, cloudiness, air temperature and humidity), (2) that in annual cycles sap flow reflects autumnal yellowing and shedding of leaves of the deciduous trees. We report for the first time comparative measurements of sap flow towards mistletoe shoots and host branches in a parasite/host consortium. This demonstrates (3) that mistletoes maintain considerably larger sap flow rates in their xylem conduits than the adjacent host branches dragging the transpiration stream of their host towards their own shoots. We also show (4) that even after the deciduous host has shed its leaves and itself does not transpire any more the evergreen mistletoe towards its shoots can maintain the persistence of a continuous sap flow via the stem and branches of the host as long as frost does not prevent that. The work presented underlines the contention that transpiration is the driving force for sap flow with continuous files of water in the xylem. It shows for the first time that mistletoes direct the flow of water through host roots and stems towards its own shoots by not only performing stronger transpiration as it is known from the literature but also by maintaining larger sap flow rates in the xylem conduits of its stems.  相似文献   

15.
We investigated use of strain gauges for monitoring the water status of trees by measuring changes in the diameter of the largest spreading branch of a 27-year-old Chamaecyparis obtusa tree. The change in xylem diameter in the branch is more closely related than the change in phloem diameter to the change in leaf water potential. Since the diurnal changes in diameter match the diurnal changes in water balance (sap flow velocity - transpiration), measuring the change in xylem diameter using a strain gauge is useful in evaluating the water status of C. obtusa.  相似文献   

16.
A moored experiment using a sediment trap was conducted at Johnson's Dock, Livingston Island from 11 December 1997 to 24 February 1998, as part of the EASIZ Programme activities carried out at the Juan Carlos I Spanish Antarctic base. Total mass vertical fluxes ranged from 23,235 mg m-2 day-1 to 89,073 mg m-2 day-1 during the experiment, with a mean value of 42,857 mg m-2 day-1. Lithogenic components were the major contributors to the settling particulate flux. Organic components accounted for a low fraction of the settling particulate matter, showing an inverse relation to total mass flux. Nevertheless, the fluxes of organic components at Johnson's Dock are as high as in the open sea. The increases in chlorophyll a in water were related to increases in the organic carbon content, which dominated over inorganic carbon during the whole experiment. Calcium carbonate particles settle without being significantly altered in the water column and are dissolved in the upper centimetres of the bottom sediments, once they are buried. The settling material consisted of fine particles, with coarse clasts transported by icebergs. Antarctic shallow environments receive important sediment fluxes from the erosion and transport action of ice.  相似文献   

17.
A sediment trap deployment was made at a station (64°42'S, 139°59'E) at five depths (537, 796, 1,259, 1,722, 2,727 m) in the marginal ice zone (MIZ) of the Antarctic Ocean during a summer productive period from 26 December 1994 to 20 January 1995. This aim of the study was to reveal a possible occurrence of a sporadic bloom in surface layers and to evaluate the role of fast-sinking particles in transportation processes of bloom-derived material down to mesopelagic and bathypelagic layers. During the observation, a marked flux increase (70.5 mg C m-2 day-1, 7.7 mg N m-2 day-1) was observed at the depth of 537 m on 7-9 January. The increased flux at 537 m decreased with depth and time. The same mass of sinking particles forming the flux maximum at each depth sank down from the shallowest trap (537 m) to the deepest trap (2,727 m) within 4-11 days, indicating that these particles were transported downward to the bottom with the sinking rate of >200 m day-1. Collected particles were composed of two major particle fractions; one was dominated by fecal pellets of macrozooplankton (mainly Euphausia superba) with relatively fast sinking rates (FSP; fast-sinking particles) and the other by minute diatoms of Fragilariopsis curta with slow sinking rates (SSP; slowly sinking particles). According to the comparison of time depth changes of these two fractions, the SSP had unexpectedly faster sinking rates comparable with the FSP during the periods of maximum fluxes, probably indicating the SSP were transformed from the FSP during sinking. The present result strongly suggests that a local bloom of F. curta and intensified zooplankton grazing activities occurred in surface layers in a few days in the MIZ, and then the egested fecal pellets were rapidly transported downward with fragmentation processes into small-sized minute particles in mesopelagic and bathypelagic layers.  相似文献   

18.
Arabidopsis halleri is a Cd hyperaccumulator; however, the mechanismsinvolved in the root to shoot translocation of Cd are not wellunderstood. In this study, we characterized Cd transfer fromthe root medium to xylem in this species. Arabidopsis halleriaccumulated 1,500 mg kg–1 Cd in the shoot without growthinhibition. A time-course experiment showed that the releaseof Cd into the xylem was very rapid; by 2 h exposure to Cd,Cd concentration in the xylem sap was 5-fold higher than thatin the external solution. The concentration of Cd in the xylemsap increased linearly with increasing Cd concentration in theexternal solution. Cd transfer to the xylem was completely inhibitedby the metabolic inhibitor carbonyl cyanide 3-chlorophenylhydrazone(CCCP). Cd concentration in the xylem sap was decreased by increasingthe concentration of external Zn, but enhanced by Fe deficiencytreatment. Analysis with 113Cd-nuclear magnetic resonance (NMR)showed that the chemical shift of 113Cd in the xylem sap wasthe same as that of Cd(NO3)2. Metal speciation with Geochem-PCalso showed that Cd occurred mainly in the free ionic form inthe xylem sap. These results suggest that Cd transfer from theroot medium to the xylem in A. halleri is an energy-dependentprocess that is partly shared with Zn and/or Fe transport. Furthermore,Cd is translocated from roots to shoots in inorganic forms.  相似文献   

19.
HOCKING  P. J. 《Annals of botany》1980,45(6):633-643
The composition of xylem sap and exudate from stem incisionsof Nicotiana glauca Grah. was compared in detail. Exudationfrom stem incisions occurred over a 5 min period in certainplants, enabling collection of 5–30 µl of sap. Therate of exudation showed an exponential decline. Exudate hada high dry matter content (170–196 mg ml–1) andhigh sugar (sucrose) levels. Xylem sap had a low pH (5.8) andexudate a pH of 7.9. Glutamine dominated the amino compoundsin xylem sap and exudate, and K+ was the major cation. Totalamino compounds in stem exudate reached 10.8 mg ml–1 whereasxylem sap contained much lower levels (0.28 mg ml–1).All mineral elements and amino compounds with the exceptionof calcium were more concentrated in stem exudate than in xylemsap. Sucrose was labelled heavily in stem exudate following pulsingof an adjacent leaf with 14CO2. A concentration gradient ofsugar (2.1 bar m–1) was recorded for stems. Levels ofsucrose, amino compounds and K+ ions in stem exudate showeda diurnal periodicity. Each commodity reached maximum concentrationat or near noon and minimum concentration about dawn. The evidencesuggests that exudate from stem incisions of N. glauca is arepresentative sample of solutes translocated in the phloem. Nicotiana glauca Grah., phloem sap, xylem sap, sucrose, amino compounds, mineral ions  相似文献   

20.
This study assessed the effects of salinity changes over space and time upon leaf gland secretion in Avicennia germinans trees growing naturally in an area featuring markedly seasonal rainfall. Soil ? (, soil N MPa) during the wet season was -0.95ǂ.05 and -2.12ǂ.08 at low and high salinity sites, respectively. During the dry season, these values decreased to -3.24ǂ.09 at low salinity and to -5.75ǂ.06 at high salinity. Consequently, predawn and midday plant water potential were lowered during drought at both sites. The rates of secretion (mmol m-2 h-1 ) increased during drought from 0.91ǂ.12 during the wet season to 1.93ǂ.12 at low salinity, and from 1.69ǂ.12 during the wet season to 2.81ǂ.15 at high salinity. Conversely, stomatal conductance (gs) was lowered by both salinity and drought. As xylem osmolality increased during drought, secretion tended to rise exponentially, and gs decayed hyperbolically. Thus, a trade-off is obtained between enhancement in salt secretion and control of water loss suggested by gs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号