首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major endopolygalacturonase excreted by Pseudomonas solanacearum was purified to greater than 95% homogeneity and shown to have an isoelectric point of 9.0 and a subunit molecular mass of 52 kilodaltons (kDa). The gene encoding this enzyme (pglA) was isolated from a genomic library of P. solanacearum DNA based on its expression in Escherichia coli and shown to be contained on a 1.8-kilobase DNA fragment. The identity of the pglA gene product and the 52-kDa polygalacturonase was demonstrated by immunoadsorption and isoelectric focusing experiments. The cloned pglA gene was apparently expressed from its own promoter in E. coli and its product was partially secreted into the periplasm. The pglA gene was insertionally inactivated in vitro and used to mutate the chromosomal pglA gene of P. solanacearum by marker exchange mutagenesis. The resulting mutant strain was deficient in production of the 52-kDa polygalacturonase and took twice as long to wilt and kill tomato plants as the wild-type parent in plant bioassay experiments. Complementation in trans with the wild-type cloned pglA gene restored virulence to near wild-type levels. The data indicate that the pglA gene is important, but not absolutely necessary, for pathogenesis.  相似文献   

2.
Pseudomonas solanacearum undergoes a spontaneous mutation that pleiotropically reduces extracellular polysaccharide (EPS) production, endoglucanase activity, and virulence and increases motility. We refer to the process that coordinately affects these traits as phenotype conversion (PC) and the resulting mutants as PC types. Previous research with the wild-type strain AW1 suggested that inactivation of a single locus could mimic phenotype conversion (T. P. Denny, F. W. Makini, and S. M. Brumbley, Mol. Plant-Microbe Interact. 1:215-223, 1988). Additional Tn5 mutagenesis of AW1 generated three more mutants (AW1-81, AW1-82, and AW1-84) that were indistinguishable from the PC type and one slightly leaky mutant (AW1-87); all four had single insertions in the same 4.0-kilobase (kb) EcoRI fragment that were responsible for the PC-like phenotype. Another insertion mutant, AW1-83, which lacks an insertion in this 4.0-kb fragment, resembled the PC type except that it was reversibly induced to produce wild-type levels of EPS when cultured adjacent to AW1. The wild-type region containing the gene that controls traits affected by phenotype conversion in AW1, designated phcA, was cloned on a 2.2-kb DNA fragment that restored all the phcA::Tn5 mutants and 11 independent spontaneous PC-type derivatives of AW1 to wild-type status. Homology with the phcA region was found in diverse wild-type strains of P. solanacearum, although restriction fragment length polymorphisms were seen. No major DNA alterations were observed in the phcA homologous region of PC types from strain AW1 or 82N. PC types from 7 of 11 conjugal strains of P. solanacearum were restored to EPS+ by phcA from AW1; however, only some PC types of strain K60 were restored, whereas others were not. We believe that a functional phcA gene is required to maintain the wild-type phenotype in P. solanacearum, and for most strains phenotype conversion results from a loss of phcA gene expression or the function of its gene product.  相似文献   

3.
Excretion of the egl gene product of Pseudomonas solanacearum.   总被引:8,自引:6,他引:2       下载免费PDF全文
  相似文献   

4.
The deduced amino acid sequence derived from a Macrophomina phaseolina beta-1,4-endoglucanase-encoding gene revealed 48% identity (over 119 amino acids) with egl1 from the phytopathogen Pseudomonas solanacearum. Its similarity to saprophyte endoglucanases was not significant. Its minimum substrate size, unlike that of any known saprophyte endoglucanase, was cellopentaose. The unique characteristics of M. phaseolina egl1-encoded endoglucanase suggest that it is phytopathogen specific.  相似文献   

5.
Pseudomonas viridiflava is a soft-rotting pathogen of harvested vegetables that produces an extracellular pectate lyase (PL) responsible for maceration of plant tissue. A pel gene encoding PL was cloned from the genome of strain SJ074 and efficiently expressed in Escherichia coli. After a series of deletion subclonings and analysis by transposon mutagenesis, the pel gene was located in a 1.2-kb PstI-BglII genomic fragment. This fragment appears to contain a promoter at the PstI end required for pel gene expression. The PL produced by pectolytic E. coli clones is identical to those produced by strain SJ074 and by other strains of P. viridiflava in terms of molecular weight (42 kDa) and pI (9.7). A mutant of strain SJ074, designated MEI, which had Tn5 specifically inserted in the pel locus was constructed by site-directed mutagenesis. The MEI mutant produced 70- to 100-fold less PL than the wild type and failed to cause tissue maceration in plants. PL production and soft-rot pathogenicity in MEI and in a Pel- mutant previously isolated from strain SF312 were restored to the wild-type level by complementation in trans with the cloned pel gene. By using the 1.2-kb fragment as a probe, pel homologs were detected in four bacteria that are pathologically unrelated to P. viridiflava. These include three pathovars of P. syringae (pv. lachrymans, pv. phaseolicola, and pv. tabaci) and Xanthomonas campestris pv. malvacearum. No DNA fragments showing homology to pel of P. viridiflava were detected in genomic digests prepared from two strains of soft-rot erwinias.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Trichoderma reesei cellulases are important biocatalysts for a wide range of industrial applications that include the paper, feed, and textile industries. T. reesei endoglucanase 1 (egl1) was successfully expressed as an active and stable catalyst in Pichia pastoris for the first time. Codon optimization was applied to egl1 of T. reesei to enhance its expression levels in P. pastoris. When compared with the originally cloned egl1 gene of T. reesei, the synthetic codon optimized egl1 gene (egl1s) was expressed at a higher level in P. pastoris. Batch fermentations of both clones with the same copy number under controlled conditions indicated that codon optimized EGI enzyme activity increased to 1.24 fold after 72 h of methanol induction. Our research indicated that P. pastoris is a suitable host for cellulase production.  相似文献   

7.
Q Huang  C Allen 《Journal of bacteriology》1997,179(23):7369-7378
Ralstonia solanacearum, which causes bacterial wilt disease of many plant species, produces several extracellular plant cell wall-degrading enzymes that are suspected virulence factors. These include a previously described endopolygalacturonase (PG), PehA, and two exo-PGs. A gene encoding one of the exo-PGs, pehB, was cloned from R. solanacearum K60. The DNA fragment specifying PehB contained a 2,103-bp open reading frame that encodes a protein of 74.2 kDa with a typical N-terminal signal sequence. The cloned pehB gene product cleaves polygalacturonic acid into digalacturonic acid units. The amino acid sequence of pehB resembles that of pehX, an exo-PG gene from Erwinia chrysanthemi, with 47.2% identity at the amino acid level. PehB also has limited similarity to plant exo-PGs from Zea mays and Arabidopsis thaliana. The chromosomal pehB genes in R. solanacearum wild-type strain K60 and in an endo-PG PehA- strain were replaced with an insertionally inactivated copy of pehB. The resulting mutants were deficient in the production of PehB and of both PehA and PehB, respectively. The pehB mutant was significantly less virulent than the wild-type strain in eggplant virulence assays using a soil inoculation method. However, the pehA mutant was even less virulent, and the pehA pehB double mutant was the least virulent of all. These results suggest that PehB is required for a wild-type level of virulence in R. solanacearum although its individual role in wilt disease development may be minor. Together with endo-PG PehA, however, PehB contributes substantially to the virulence of R. solanacearum.  相似文献   

8.
Escherichia coli strain N100 has been mutagenized by transposon mutagenesis and mutants with a cell surface leaky phenotype have been isolated. The mutant designated as E. coli N100::Tn5 excreted periplasmic proteins like ribonuclease and alkaline phosphatase. When this mutant strain was transformed with plasmids containing cloned cholera toxin genes, the toxin protein synthesized in the cells were excreted. The potentiality of this strain as a live oral vaccine for cholera has been discussed.  相似文献   

9.
Trichoderma reesei strains were constructed for production of elevated amounts of endoglucanase II (EGII) with or without cellobiohydrolase I (CBHI). The endoglucanase activity produced by the EGII transformants correlated with the copy number of the egl2 expression cassette. One copy of the egl2 expression cassette in which the egl2 was under the cbh1 promoter increased production of endoglucanase activity 2.3-fold, and two copies increased production about 3-fold above that of the parent strain. When the enzyme with elevated EGII content was used, an improved stonewashing effect on denim fabric was achieved. A T. reesei strain producing high amounts of EGI and -II activities without CBHI and -II was constructed by replacing the cbh2 locus with the coding region of the egl2 gene in the EGI-overproducing CBHI-negative strain. Production of endoglucanase activity by the EG-transformant strain was increased fourfold above that of the host strain. The filter paper-degrading activity of the endoglucanase-overproducing strain was lowered to below detection, presumably because of the lack of cellobiohydrolases.  相似文献   

10.
In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E. coli or a mutant strain deficient in htrB, a chimeric LPS with altered lipid A structure was produced. Compared with wild-type E. coli lipid A, the new lipid A species contained a palmitate (C16) in the position normally occupied by laurate (C12) suggesting that the cloned gene performs the same function as E. coli htrB but preferentially transfers the longer-chain palmitic acid that is known to be present in P. gingivalis LPS. LPS was purified from wild-type E. coli, the E. coli htrB mutant strain and the htrB mutant strain expressing the P. gingivalis acyltransferase. LPS from the palmitate bearing chimeric LPS as well as the htrB mutant exhibited a reduced ability to activate human embryonic kidney 293 (HEK293) cells transfected with TLR4/MD2. LPS from the htrB mutant also had a greatly reduced ability to stimulate interleukin-8 (IL-8) secretion in both endothelial cells and monocytes. In contrast, the activity of LPS from the htrB mutant bacteria expressing the P. gingivalis gene displayed wild-type activity to stimulate IL-8 production from endothelial cells but a reduced ability to stimulate IL-8 secretion from monocytes. The intermediate activation observed in monocytes for the chimeric LPS was similar to the pattern seen in HEK293 cells expressing TLR4/MD2 and CD14. Thus, the presence of a longer-chain fatty acid on E. coli lipid A altered the activity of the LPS in monocytes but not endothelial cell assays and the difference in recognition does not appear to be related to differences in Toll-like receptor utilization.  相似文献   

11.
RcsA is a positive activator of extracellular polysaccharide synthesis in the Enterobacteriaceae. A cosmid clone containing the rcsA gene from Erwinia amylovora was identified by its ability to restore mucoidy to an E. stewartii rcsA mutant. The rcsA gene was subcloned on a 2.2-kilobase HindIII-PstI fragment that hybridized with an E. stewartii rcsA probe and complemented E. stewartii and Escherichia coli rcsA mutants. In addition, the cloned E. amylovora rcsA gene stimulated expression of cps::lac fusions in E. coli and E. stewartii. The rcsA region was sequenced, and one open reading frame of 211 amino acids was found. The predicted protein sequence specified by this open reading frame was 55% homologous with that of the Klebsiella pneumoniae RcsA protein. Highly conserved regions in the 3' and 5' ends of the two proteins were observed. An E. amylovora rcsA mutant was constructed by Tn5 mutagenesis of the cloned gene followed by recombination of the mutation into the chromosome of wild-type strain Ea1/79. The synthesis of both amylovorin and levan was reduced by more than 90% in this mutant, indicating common regulation of the two polysaccharides by rcsA. Virulence of the rcsA mutant on immature pear fruit was diminished but not completely abolished.  相似文献   

12.
13.
The suicide plasmid pSUP2021 was used to introduce Tn5 into the Pseudomonas solanacearum wild-type strain K60. We isolated eight avirulent mutants after screening 6,000 kanamycin-resistant transconjugants by inoculating eggplant (Solanum melongena L. cv. Black Beauty) and tobacco (Nicotiana tabacum L. cv. Bottom Special) seedlings. The Tn5-containing EcoRI fragments from the eight mutants were unique, suggesting that numerous genes specify virulence in this species. These EcoRI fragments were cloned into pBR322 or pUC12, and one of the clones, pKD810, was transformed into K60. All of the kanamycin-resistant, ampicillin-sensitive transformants were avirulent. Three randomly selected avirulent transformants were shown to carry the Tn5-containing fragment in place of the wild-type fragment and to exhibit the same hybridization pattern as the original KD810 mutant did. With pKD810 as a probe, we identified cosmids carrying the wild-type virulence genes by using a genomic library of K60 prepared in pLAFR3. Two of the homologous cosmids, pL810A and pL810C, when introduced into KD810 by transformation, restored virulence and normal growth of this mutant in tobacco. Altogether, these data indicate that the gene(s) interrupted by Tn5 insertion in KD810 is essential for the virulence of P. solanacearum. Further characterization of this gene is now being completed by subcloning, transposon mutagenesis, and complementation analysis.  相似文献   

14.
Azorhizobium caulinodans ORS571, a symbiont of the tropical leguminous plant Sesbania rostrata, showed low, constitutive levels of endoglucanase (Egl) activity. A clone carrying the gene responsible for this phenotype was isolated via introduction of a genomic library into the wild-type strain and screening for transconjugants with enhanced Egl activity. By subcloning and expression in Escherichia coli, the Egl phenotype was allocated to a 3-kb EcoRI-BamHI fragment. However, sequence analysis showed the egl gene to be much larger, consisting of an open reading frame of 1,836 amino acids. Within the deduced polypeptide, three kinds of putative domains were identified: a catalytic domain, two cellulose-binding domains, and an eightfold reiterated motif. The catalytic domain belongs to the family A of cellulases. A C-terminal stretch of 100 amino acids was similar to family II cellulose-binding domains. A second copy of this domain occurred near the middle of the polypeptide, flanked by reiterated motifs. ORS571 mutants carrying a Tn5 insertion in the egl gene had lost the Egl activity. These mutants as well as Egl-overproducing strains showed a normal nodulation behavior, indistinguishable from wild-type nodulation on Sesbania rostrata under laboratory conditions.  相似文献   

15.
Serratia entomophila UC9 (A1MO2), which causes amber disease in the New Zealand grass grub Costelytra zealandica, was subjected to transposon (TnphoA)-induced mutagenesis. A mutant (UC21) was found to be nonpathogenic (Path-) to grass grub larvae in bioassays and was shown, by Southern hybridization, to contain a single TnphoA insertion. This mutant failed to adhere to the gut wall (Adn-) of the larvae and also failed to produce pili (Pil-). A comparative study of the total protein profiles of wild-type S. entomophila UC9 and mutant UC21 revealed that the mutant lacked an approximately 44-kDa protein and overexpressed an approximately 20-kDa protein. Transfer of cosmids containing homologous wild-type sequences into mutant strain UC21 restored wild-type phenotypes (Path+, Pil+, and Adn+). One of the complementing cosmids (pSER107) conferred piliation on Pil- Escherichia coli HB101. The TnphoA insertion in UC21 was mapped within an 8.6-kb BamHI fragment common to the complementing cosmids, and we designated this gene locus amb-1. Six gene products with molecular masses of 44, 36, 34, 33, 20, and 18 kDa were detected in E. coli minicells exclusive to the cloned 8.6-kb fragment (pSER201A). The 44-kDa gene product was not detected in E. coli minicells containing the cloned mutant fragment. Saturation mutagenesis of this fragment produced four unlinked insertional mutations with active fusions to TnphoA. These active fusions disrupted the expression of one or more gene products encoded by amb-1. The 8.6-kb fragment cloned in the opposite orientation (pSER201B) expressed only a 20-kDa protein. We propose that these are the products of structural and/or regulatory genes involved in adhesion and/or piliation which are prerequisites in the S. entomophila-grass grub interaction leading to amber disease.  相似文献   

16.
The Escherichia coli strain carrying the lac Y54-41 gene encodes a mutant lactose permease which carries out normal downhill transport of galactosides but is defective in uphill accumulation. In this study, the mutant lac Y54-41 gene was cloned onto the multicopy vector pUR270. As expected, the cloned gene was shown to express normal downhill transport activity but was markedly defective in the uphill transport of methyl-beta-D-thiogalactopyranoside. Direct measurements of H+ transport revealed that the mutant permease can transport H+ with methyl-beta-D-thiogalactopyranoside but at a significantly reduced capacity compared to the wild-type strain. However, under conditions where the mutant and wild-type strains both transport lactose at similar rates, no detectable H+ transport was observed in the mutant strain. The entire cloned lac Y54-41 gene was subjected to DNA sequencing, and a single base substitution was found which replaces glycine 262 in the protein with a cysteine residue. Inhibition experiments showed that the mutant permease is dramatically more sensitive to three different sulfhydryl reagents: N-ethylmaleimide, p-hydroxymericuribenzoate, and p-hydroxymercuriphenylsulfonic acid. However, the lactose analogue, thiodigalactoside, was only marginally effective at protecting against inhibition in the mutant strain. The results are consistent with the idea that the sulfhydryl reagents are inhibiting the mutant permease activity by reacting with cysteine 262.  相似文献   

17.
Burkholderia sp. strain PsJN stimulates root growth of potato explants compared to uninoculated controls under gnotobiotic conditions. In order to determine the mechanism by which this growth stimulation occurs, we used Tn5 mutagenesis to produce a mutant, H41, which exhibited no growth-promoting activity but was able to colonize potato plants as well as the wild-type strain. The gene associated with the loss of growth promotion in H41 was shown to exhibit 65% identity at the amino acid level to the nadC gene encoding quinolinate phosphoribosyltransferase (QAPRTase) in Ralstonia solanacearum. Complementation of H41 with QAPRTase restored growth promotion of potato explants by this mutant. Expression of the gene identified in Escherichia coli yielded a protein with QAPRTase activities that catalyzed the de novo formation of nicotinic acid mononucleotide (NaMN). Two other genes involved in the same enzymatic pathway, nadA and nadB, were physically linked to nadC. The nadA gene was cotranscribed with nadC as an operon in wild-type strain PsJN, while the nadB gene was located downstream of the nadA-nadC operon. Growth promotion by H41 was fully restored by addition of NaMN to the tissue culture medium. These data suggested that QAPRTase may play a role in the signal pathway for promotion of plant growth by PsJN.  相似文献   

18.
A locus in Pseudomonas solanacearum AW1 responsible for the hypersensitive response (HR) on tobacco was cloned by complementation in the tobacco-pathogenic strain P. solanacearum NC252. The NC252 HR+ transconjugants lost pathogenicity on tobacco, indicating that the cloned locus could restrict the host range of NC252. Restriction enzyme mapping, transposon mutagenesis, and subcloning showed that, at most, 2.0 kilobases of the cloned DNA was required for NC252 transconjugants to elicit HR on tobacco. Site-directed insertional mutagenesis of the wild-type locus in strain AW1 to create AW1-31 eliminated HR activity on tobacco. However, AW1-31 retained pathogenicity on tomato and eggplant, confirming that this locus contains an avirulence gene, designated avrA. In contrast to the wild type, AW1-31 multiplied to almost the same extent as NC252 after infiltration into tobacco leaves. Nevertheless, AW1-31 did not wilt tobacco when stem inoculated, suggesting that additional factors condition host range. AW1 was HR+ on 27 N. tabacum cultivars, whereas AW1-31 was always HR-, strongly suggesting that avrA is specific at the host species level.  相似文献   

19.
以自行分离筛选出的天然枯草芽孢杆菌(Bacillus subtilis)C-36的染色体DNA为模板,PCR扩增得到含有内切葡聚糖酶基因的DNA片段,将其克隆到pMD-18T载体中,序列分析表明,克隆得到的DNA片段全长1602bp,编码一个含有499个氨基酸的多肽。与其他芽孢杆菌内切葡聚糖酶基因序列比对,其核苷酸同源率为90%~93%,其编码的氨基酸序列的同源性在90%~98%,已将此基因注册GenBank(DQ782954)。将含内切葡聚糖酶基因的重组克隆质粒进行亚克隆,用Kpn I和EcoR I双酶切后,与相同酶切的表达载体pET-32a相连接,并导入大肠杆菌BL21中表达。蛋白质电泳实验结果表明在6.47×10^4处有表达蛋白带。经测定表达蛋白比酶活力达99.02U/mL,为出发菌C-36(63.78U/mL)的1.55倍。  相似文献   

20.
Extracellular polysaccharide (EPS) has long been regarded as one of the most important factors involved in wilting of plants by Pseudomonas solanacearum. By means of transposon Tn5 mutagenesis, we have isolated a class of mutants that have an afluidal colony morphology but retain the ability to cause severe wilting and death of tobacco plants. One such mutant, KD700, was studied in detail. By marker exchange mutagenesis, the altered colony morphology was shown to be the result of a single Tn5 insertion in a 14.3-kilobase EcoRI fragment. This defect could be corrected by introducing a homologous clone from a cosmid library of the wild-type, parental strain K60. The Tn5-containing fragment was introduced into other P. solanacearum wild-type strains by marker exchange, and these altered strains had the same afluidal phenotype as KD700. N-Acetylgalactosamine (GalNac), the major constituent of EPS of all wild-type strains of P. solanacearum, was not detected by gas chromatography-mass spectrometry analysis of vascular fluids from wilting plants infected by KD700. In contrast, GalNac was readily detected in similar fluids of plants infected by K60. Polysaccharides extracted from culture filtrates of KD700 contained approximately one-fifth of the GalNac present in polysaccharides from K60. No differences in growth rates in culture or in planta between the mutant and the parental strains were observed. Since strains that are deficient in EPS production can remain highly virulent to tobacco, we conclude that EPS, or at least its GalNac-containing component, may not be required for disease development by P. solanacearum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号