首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cells from enlarged lymph nodes of MRL/MpJ-lpr/lpr (lpr) mice were found to express more binding sites for strongly hemagglutinating Phaseolus vulgaris agglutinin (PHA-E4) and fewer binding sites for Ricinus communis aglutinin (RCA) than those from normal MRL/MpJ-+/+ (+/+) mouse lymph node. We found that high-molecular-weight (180K-220K) glycoproteins on lpr T cells were strongly stained with these lectins on Western-blotting. These glycoproteins were found to belong to the CD45 family, by absorption with monoclonal anti-CD45 antibody. We also found that the other glycoproteins (105K and 120K glycoproteins on lpr T cells and a 105K glycoprotein on +/+ T cells) were strongly stained with the lectins which preferentially bind to mucin-type (O-linked) sugar chains on the cell surface. These glycoproteins were found to be leukosialins, by absorption with anti-leukosialin serum. From the results of the lectin-binding to these glycoproteins after sialidase treatment, CD45 antigens and leukosialin molecules on lpr T cells were found to have many more terminal alpha 2,3-linked sialic acids than those on +/+ T cells, and this fact explains why lpr T cells have more binding sites for PHA-E4 but fewer binding sites for RCA.  相似文献   

2.
The nature of the receptors for four lectins specific for -galactosyl residues was examined in human lymphocytes. The cells were fixed with formaldehyde to avoid subsequent cell lysis, treated with pronase, sialidase and organic solvents, and the binding of the lectins to the treated cells measured. The results show that the bulk of the receptors for peanut agglutinin (PNA) and ricin (RCA 60) are glycoproteins, whereas those for Ricinus communis agglutinin (RCA 120) and soybean agglutinin (SBA) are distributed nearly equally between membrane glycoproteins and glycolipids.  相似文献   

3.
Carbohydrate-containing structures in rat liver rough microsomes (RM) were localized and characterized using iodinated lectins of defined specificity. Binding of [125I]Con A increased six- to sevenfold in the presence of low DOC (0.04--0.05%) which opens the vesicles and allows the penetration of the lectins. On the other hand, binding of [125I]WGA and [125I]RCA increased only slightly when the microsomal vesicles were opened by DOC. Sites available in the intact microsomal fraction had an affinity for [125I]Con A 14 times higher than sites for lectin binding which were exposed by the detergent treatment. Lectin-binding sites in RM were also localized electron microscopically with lectins covalently bound to biotin, which, in turn, were visualized after their reaction with ferritin-avidin (F-Av) markers. Using this method, it was demonstrated that in untreated RM samples, binding sites for lectins are not present on the cytoplasmic face of the microsomal vesicles, even after removal of ribosomes by treatment with high salt buffer and puromycin, but are located on smooth membranes which contaminate the rough microsomal fraction. Combining this technique with procedures which render the interior of the microsomal vesicles accessible to lectins and remove luminal proteins, it was found that RM membranes contain binding sites for Con A and for Lens culinaris agglutinin (LCA) located exclusively on the cisternal face of the membrane. No sites for WGA, RCA, soybean (SBA) and Lotus tetragonobulus (LTA) agglutinins were detected on either the cytoplasmic or the luminal faces of the rough microsomes. These observations demonstrate that: (a) sugar moieties of microsomal glycoproteins are exposed only on the luminal surface of the membranes and (b) microsomal membrane glycoproteins have incomplete carbohydrate chains without the characteristic terminal trisaccharides N-acetylglucosamine comes from galactose comes from sialic acid or fucose present in most glycoproteins secreted by the liver. The orientation and composition of the carbohydrate chains in microsomal glycoproteins indicate that the passage of these glycoproteins through the Golgi apparatus, followed by their return to the endoplasmic reticulum, is not required for their biogenesis and insertion into the endoplasmic reticulum (ER) membrane.  相似文献   

4.
Release of sialic acid from the glycoproteins of the normal human erythrocyte surface by neuraminidase was investigated. The glycoproteins of the membrane were separated by electrophoresis in sodium dodecylsulfate polyacrylamide gels. Sialic acid was determined in the sliced gel by a modification of the 2-thiobarbituric acid method, revealing three sialic acid-containing glycoproteins. Treatment of intact erythrocytes with neuraminidase to remove varying amounts of sialic acid indicates that all the glycoproteins are essentially equally accessible to the neuraminidase when 20%–60% of the sialic acid is removed. Similar but not quite identical results were obtained with isolated erythrocyte membranes.Treatment of intact cells with the lectins concanavalin A or phytohemagglutinin-P resulted in shielding of about 25% and 50%, respectively, of the sialic acid from neuraminidase. Concanavalin A blocked sialic acid release over long time periods and with high concentrations of neuraminidase. In contrast, the sialic acid shielding by phytohemagglutinin-P can be overcome by high concentrations of neuraminidase. Both lectins were found to shield the various glycoproteins selectively, with different patterns of shielding. Wheat germ agglutinin exhibited no detectable effect on the susceptibility of the erythrocyte sialic acid to neuraminidase.  相似文献   

5.
We examined the glycoprotein composition of intestinal goblet cells in jejunal and colonic biopsies obtained from pigs on different diets. Paraffin sections were stained both chemically and with the following horseradish-peroxidase conjugated lectins: Canavalia ensiformis (Con-A), Limulus polyphemus (LPA), Lotus tetragonolobus (LTA), Arachis hypogaea (PNA), Ricinus communis (RCA1), Glycine max (SBA) and Triticum vulgaris (WGA). Using chemical staining procedures, only small quantitative differences were noted between the two organs. With respect to lectin staining, the mucus of the jejunum was characterized by the absence of Con-A binding sites, and colonic mucus consistently exhibited an absence of SBA affinity. After dietary modifications, O-acetyl sialic acid reactivity was lowered in the jejunum but was enhanced in the colon. In the jejunum, the glycoproteins became neuraminidase susceptible, whereas the colon became characterized by the absence of neutral mucins. The affinity for the tested lectins after the different diets was variable, but the most striking effects were observed after the fibreless diet (milk alone). Our data suggest the existence of marked regional variations in goblet-cell mucus and indicate significant differences between the glycoprotein components of the jejunal and colonic mucosa. Furthermore, the biosynthesis of mucins in both regions was altered by even only short-term feeding modifications.  相似文献   

6.
The major glycoprotein g2 was purified from three strains of Rous sarcoma virus, representing subgroups A, B, and C. Carbohydrate analysis showed that glucosamine, mannose, galactose, fucose and sialic acid constitute 40% of the weight of the subgroup A glycoprotein and 15% of the subgroup B and C glycoproteins. The molar ratios of sugars were very similar and amino acid compositions were similar but not identical for the three glycoproteins. Glycosidase digestions of subgroup A and C glycoproteins suggested the presence of two types of oligosaccharide chains, the complex serum type, with terminal sequences sialic acidα-Galβ-GlcNAcβ- and the high mannose type with terminal α-linked mannosyl residues. After removal of 70% of the carbohydrate by glycosidases, subgroup A glycoprotein contained only glucosamine and mannose, in the molar ratio 2.0:1.3. The sequence of sugar release was consistent with oligosaccharide structures such as those which have been described for other glycoproteins. The plant lectins concanavalin A and wheat germ agglutinin were shown to interact strongly with the g2 glycoprotein from viruses of all three subgroups.  相似文献   

7.
Summary We examined the glycoprotein composition of intestinal goblet cells in jejunal and colonic biopsies obtained from pigs on different diets. Paraffin sections were stained both chemically and with the following horseradishperoxidase conjugated lectins: Canavalia ensiformis (Con-A), Limulus polyphemus (LPA), Lotus tetragonolobus (LTA), Arachis hypogaea (PNA), Ricinus communis (RCA1), Glycine max (SBA) and Triticum vulgaris (WGA). Using chemical staining procedures, only small quantitative differences were noted between the two organs. With respect to lectin staining, the mucus of the jejunum was characterized by the absence of Con-A binding sites, and colonic mucus consistently exhibited an absence of SBA affinity. After dietary modifications, O-acetyl sialic acid reactivity was lowered in the jejunum but was enhanced in the colon. In the jejunum, the glycoproteins became neuraminidase susceptible, whereas the colon became characterized by the absence of neutral mucins. The affinity for the tested lectins after the different diets was variable, but the most striking effects were observed after the fibreless diet (milk alone). Our data suggest the existence of marked regional variations in goblet-cell mucus and indicate significant differences between the glycoprotein components of the jejunal and colonic mucosa. Furthermore, the biosynthesis of mucins in both regions was altered by even only short-term feeding modifications.  相似文献   

8.
Ricinus communis agglutinin I (RCA120) is considered a versatile tool for the detection of galactose-containing oligosaccharides. However, possible contamination by the highly toxic isolectin 'ricin' has become a critical issue for RCA120's continued use. From a practical viewpoint, it is necessary to find an effective substitute for RCA120. For this purpose, we examined by means of frontal affinity chromatography over 100 lectins which have similar sugar-binding specificities to that of RCA120. It was found that Erythrina cristagalli lectin (ECL) showed the closest similarity to RCA120. Both lectins prefer Gal beta1-4GlcNAc (type II) to Gal beta1-3GlcNAc (type I) structures, with increased affinity for highly branched N-acetyllactosamine-containing N-glycans. Their binding strength significantly decreased following modification of the 3-OH, 4-OH and 6-OH of the galactose moiety of the disaccharide, as well as the 3-OH of its N-acetylglucosamine residue. Several differences were also observed in the affinity of the two lectins for various other ligands, as well as effects of bisecting GlcNAc and terminal sialylation. Although six other Erythrina-derived lectins have been reported with different amino acid sequences, all showed quite similar profiles to that of ECL, and thus, to RCA120. Erythrina lectins can therefore serve as effective substitutes for RCA120, taking the above differences into consideration.  相似文献   

9.
Animal colostrum and milk contain complex mixtures of oligosaccharides, which have species-specific profiles. Milk oligosaccharides have various types of structure related to the core structures of glycolipids and N- and O-glycans of glycoproteins and provide a good library to examine the binding of oligosaccharides to various lectins. Recently, we reported a capillary affinity electrophoresis (CAE) method for analyzing the interactions between lectins and complex mixtures of N-linked oligosaccharides prepared from serum glycoproteins. The present paper reports the interactions between 24 milk oligosaccharides and six lectins (PA-I, RCA(120), SBA, WGA, UEA-I, and AAL) analyzed using CAE. Based on the resulting data, we constructed a library that enables us to determine nonreducing terminal monosaccharides, such as Gal, GalNAc, GlcNAc, and Fuc, and to differentiate Gal- or Fuc-linked isomers, such as lacto-N-tetraose, lacto-N-neotetraose, and lacto-N-fucopentaose II and III. In addition, using the library, we show that a combination of the lectins can characterize the neutral oligosaccharides derived from bovine colostrum.  相似文献   

10.
Lectins from peanuts (PNA) and soy beans (SBA) bind terminal residues of galactose (Gal) and N-acetyl-galactosamine (GalNAc) respectively. Galactose oxidase oxidizes the hydroxyl group at C-6 of terminal Gal and GalNAc blocking the binding of PNA and SBA. Binding of these lectins to sugar residues is also severely limited by the existence of terminal residues of sialic acid. In the present study, lectin cytochemistry in combination with enzymatic treatments and quantitative analysis has been applied at light and electron microscopical levels to develop a simple methodology allowing the in situ discrimination between penultimate and terminal Gal/GalNAc residues. The areas selected for the demonstration of the method included rat zona pellucida and acrosomes of rat spermatids, which contain abundant glycoproteins with terminal Gal/GalNAc residues. Zona pellucida was labelled by LFA, PNA and SBA. After galactose oxidase treatment, terminal Gal/GalNAc residues are oxidized, and reactivity to PNA/SBA is abolished. The sequential application of galactose oxidase, neuraminidase and PNA/ SBA has the following effects: (i) oxidation of terminal Gal/GalNAc residues; (ii) elimination of terminal sialic acid residues rendering accessible to the lectins preterminal Gal/GalNAc residues; and (iii) binding of the lectins to the sugar residues. Acrosomes were reactive to PNA and SBA. No LFA reactivity was detected, thus indicating the absence of terminal sialic acid residues. Therefore, no labelling was observed after both galactose oxidase--PNA/SBA and galactose oxidase--neuraminidase--PNA/SBA sequences. In conclusion, the combined application of galactose oxidase, neuraminidase and PNA/SBA cytochemistry is a useful technique for the demonstration of penultimate carbohydrate residues with affinity for these lectins. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

11.
We demonstrated the presence of intracellular lectin binding sites in promastigotes of Leishmania mexicana amazonensis. Direct and indirect lectin-gold techniques were used on Lowicryl K4M-embedded cells. The nuclear compartment was labeled by most lectins. Nucleoli were mainly labeled by WFH (Wistaria floribunda hemagglutinin) and LFA (Limax flavus agglutinin) specific for D-galactose/N-acetyl-D-galactosamine (D-Gal/D-GalNAc) and sialic acid, respectively. Sections treated with the fetuin-gold complex without previous lectin incubation also exhibited labeled nucleoli, although less intensely, suggesting the presence not only of sialic acid but also of a sialic acid-specific endogenous carbohydrate binding molecule in Leishmania nuclei. Surprisingly, the Golgi complex was never labeled, whereas the endoplasmic reticulum was frequently labeled, especially by RCA (Ricinus communis agglutinin; D-GalNAc/D-Gal) and WGA (wheat germ agglutinin; D-GlcNAc). The kinetoplast, a DNA-containing structure located within the mitochondrion, was generally labeled towards its extremities, where previous studies have shown the presence of ribonucleoproteins. Some possible biological roles for these intracellular glycoconjugates are discussed.  相似文献   

12.
The surface saccharide composition of collagenase-dispersed pancreatic cells from adult guinea pig and rat glands was examined by using eight lectins and their ferritin conjugates: Concanavalin A (ConA); Lens culinaris (LCL); Lotus tetragonolobus (LTL); Ricinus communis agglutinins I and II (RCA I, RCA II); Soybean agglutinin (SBA); Ulex europeus lectin (UEL); and wheat germ agglutinin (WGA). Binding studies of iodinated lectins and lectin-ferritin conjugates both revealed one population of saturable, high-affinity receptor sites on the total cell population (approximately 95% acinar cells). Electron microscopy, however, revealed differences in lectin-ferritin binding to the plasmalemma of acinar, centroacinar, and endocrine cells. Whereas acinar cells bound heavily all lectin conjugates, endocrine and centroacinar cells were densely labeled only by ConA, LCL, WGA, and RCA I, and possessed few receptors for LTL, UEL, and SBA. Endocrine and centroacinar cells could be differentiated from each other by using RCA II, which binds to centroacinar cells but not to endocrine cells. Some RCA II receptors appeared to be glycolipids because they were extracted by ethanol and chloroform-methanol in contrast to WGA receptors which resisted solvent treatment but were partly removed by papain digestion. RCA I receptors were affected by neither treatment. The apparent absence of receptors for SBA on endocrine and centroacinar cells, and for RCA II on endocrine cells, was reversed by neuraminidase digestion, which suggested masking of lectin receptors by sialic acid. The absence of LTL and UEL receptors on endocrine and centroacinar cells was not reversed by neuraminidase. We suggest that the differential lectin-binding patterns observed on acinar, centroacinar, and endocrine cells from the adult pancreas surface-carbohydrate-developmental programs expressed during morphogenesis and cytodifferentiation of the gland.  相似文献   

13.
Glycoproteins which participate in DNA-protein cross-links induced by action of cis-diamminedichloroplatinum (cis-DDP) in intact nuclei of chicken liver were investigated. Digoxigenin-labelled lectins with different sugar specificity were used for detection and characterization of these glycoproteins. Our results showed the presence of glycoproteins bearing high mannose as well as complex type oligosaccharides in chicken liver nuclei. In most cases of complex oligosaccharides, sialic acid residues bound in alpha(2-6) but not in alpha(2-3) linkage were present.  相似文献   

14.
A rapid and convenient method was established for analysis of the N-linked carbohydrate chains of glycoproteins on nitrocellulose sheets. Proteins were separated by polyacrylamide gel electrophoresis, transferred to nitrocellulose sheets, reacted with peroxidase-coupled lectins, and detected by color development of the enzyme reaction. Four glycoproteins having N-linked oligosaccharide chains were used as test materials: Taka-amylase A (which has a high-mannose-type chain), ovalbumin (high-mannose-type chains and hybrid-type chains), transferrin (biantennary chains of complex type), and fetuin (triantennary chains of complex type and O-linked-type chains). Concanavalin A interacted with Taka-amylase A, transferrin, and ovalbumin but barely interacted with fetuin. After treatment of the glycoproteins on a nitrocellulose sheet with endo-beta-N-acetylglucosaminidase H, transferrin reacted with concanavalin A but Taka-amylase A and ovalbumin did not. Wheat germ agglutinin interacted with Taka-amylase A but not ovalbumin; therefore, they were distinguishable from each other. Fetuin and transferrin were detected by Ricinus communis agglutinin or peanut agglutinin after removal of sialic acid by treatment with neuraminidase or by weak-acid hydrolysis. Erythroagglutinating Phaseolus vulgaris agglutinin detected fetuin and transferrin. Thus, the combined use of these procedures distinguished the four different types of N-linked glycoproteins. This method was also applied to the analysis of membrane glycoproteins from sheep red blood cells. The terminally positioned sugars of sialic acid, alpha-fucose, alpha-galactose, and alpha-N-acetylgalactosamine were also detected with lectins from Limulus polyphemus, Lotus tetragonolobus, Maclura pomifera, and Dolichos biflorus, respectively.  相似文献   

15.
Recently, we showed that porcine sialoadhesin (pSn) mediates internalization of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) in alveolar macrophages (Vanderheijden et al., J. Virol. 77:8207-8215, 2003). In rodents and humans, sialoadhesin, or Siglec-1, has been described as a macrophage-restricted molecule and to specifically bind sialic acid moieties. In the current study, we investigated whether pSn is a sialic acid binding protein and, whether so, whether this property is important for its function as a PRRSV receptor. Using untreated and neuraminidase-treated sheep erythrocytes, we showed that pSn binds sialic acid. Furthermore, pSn-specific monoclonal antibody 41D3, which blocks PRRSV infection, inhibited this interaction. PRRSV attachment to and infection of porcine alveolar macrophages (PAM) were both shown to be dependent on the presence of sialic acid on the virus: neuraminidase treatment of virus but not of PAM blocked infection and reduced attachment. Enzymatic removal of all N-linked glycans on the virus with N-glycosidase F reduced PRRSV infection, while exclusive removal of nonsialylated N-linked glycans of the high-mannose type with endoglycosidase H had no significant effect. Free sialyllactose and sialic acid containing (neo)glycoproteins reduced infection, while lactose and (neo)glycoproteins devoid of sialic acids had no significant effect. Studies with linkage-specific neuraminidases and lectins indicated that alpha2-3- and alpha2-6-linked sialic acids on the virion are important for PRRSV infection of PAM. From these results, we conclude that pSn is a sialic acid binding lectin and that interactions between sialic acid on the PRRS virion and pSn are essential for PRRSV infection of PAM.  相似文献   

16.
Sites of binding of eight different lectins (LTA, UEA I, WGA, SBA, DBA, CON A, PNA, RCA I) to cat submandibular gland were studied after exposure of tissue sections to sialidase, alpha-fucosidase, beta-galactosidase, alpha-mannosidase, beta-N-acetylglucosaminidase. All lectins were affected by enzymatic predigestion and the labeling of individual lectins was highly dependent upon the glycosidase used to pretreat the sections. Glycoconjugates of demilunar, acinar and ductal cells exhibited a different composition of terminal sequences. For example, fucose proved to form the disaccharide fucose-galactose in demilunar and acinar cells, whereas it was present with the sequence fucose-N-acetyl-D-glucosamine in striated duct cells. Sialic acid participated both to the terminal sequence sialic acid-galactose and sialic acid-N-acetyl-D-galactosamine either in demilunar or in ductal cells. Lectin labeling combined with glycosidase digestion was also helpful in verifying the influence of neighbouring oligosaccharides on the affinity of lectins for the respective sugars.  相似文献   

17.
Callinectes sapidus serum and hemocyte microsomal fraction agglutinated a panel of untreated and enzyme treated vertebrate erythrocytes and cultured lymphoid cell lines. Crossed absorption experiments suggested the presence of multiple specific lectins in the serum. The microsomal fraction showed a 35-fold increase in specific activity when compared to the hemocyte lysate suggesting that hemocyte lectins are membrane-associated. Agglutination by serum and hemocyte lectins was inhibited by low concentrations of N-acylamino compounds including sialic, N-acetylmuramic and N-acetylglutamic acids, GalNAc, GlcNAc, ManNAc, and glycoproteins and polysaccharides which contain these carbohydrates: bovine submaxillary mucin, human orosomucoid, porcine stomach mucin and colominic acid. Hemagglutination by lectins of both serum and hemocyte microsomal fraction required divalent cations as suggested by the reduction in hemagglutination titer in the presence of the chelators EDTA, EGTA, CDTA and citrate.  相似文献   

18.
A new methodology was developed to study the cell-surface glycoproteins of cultured human skin fibroblasts. This was based on the binding of a variety of biotinyl-lectins to nitrocellulose electrophoretic transfers of total fibroblast lysates after separation in sodium dodecyl sulphate/polyacrylamide gels, followed by reaction with avidin-biotinyl-peroxidase complexes and detection with 3,3'-diaminobenzidine. The technique proved to be very sensitive and a large number of glycoproteins were detected by binding of concanavalin A and wheat-germ agglutinin. Binding of peanut agglutinin and to a lesser extent of Ricinus communis agglutinin I were found to be dependent on prior removal of sialic acid residues from the glycoproteins. Since by treatment of intact viable cells with neuraminidase only external sialic acid residues were removed, peanut agglutinin and Ricinus communis agglutinin I could thus be utilized for selective detection of cell-surface glycoproteins. Also, because peanut agglutinin was known to bind preferentially to oligosaccharides of the O-glycosidic type, and Ricinus communis agglutinin I to those of the N-glycosidic type, the two lectins were complementary in displaying the surface glycoproteins and in providing information about their oligosaccharide composition.  相似文献   

19.
Summary Formalin-fixed tissue specimens containing glycoproteins with side chain O-acylated sialic acids were used to re-examine, compare and evaluate the usefulness of three methods based on the periodic acid-borohydride reduction-saponification-periodic acid-Schiff sequence (PA-Bh-KOH-PAS) for the histochemical identification of 9-O-acyl sialic acids (9-O-AcSA). Method I, modified from Vehet al. (1979), involved a comparison of the staining intensely obtained when both oxidation steps of the PA-Bh-KOH-PAS sequence were carried out with the selective oxidation technique of Volzet al. (1987) with that obtained when the initial oxidation step was carried out with 0.5m periodic acid for 4h at room temperature. Methods II and III, modified from Reidet al. (1978), involved an initial PA-Bh step under oxidation conditions that cleaved all the vicinal diols associated with neutral sugars and side chain unsubstituted and 7-O-acyl sialic acids. The Schiff staining obtained following subsequent re-oxidation with either 0.5m (method II) or 1% periodic acid (method III) for 4h at room temperature (PA-Bh-PAS procedure) identifies 9-O-AcSa.The results of this study indicate that (a) bovine submandibular gland acinar cell glycoproteins contain 9-O-AcSA as well as sialic acids which have ester substituents at C7 or C8, or which are di-(C7C8, C7C9, C8C9) or tri-(C7C8C9) substituted, (b) the side chain O-acyl sialic acids of the glycoproteins of Sprague Dawley rat sublingual gland acinar cells are entirely or almost entirely 9-O-AcSA and (c) it is likely that the majority of the human adult and foetal glycoproteins studied contain small quantities of 9-O-AcSA mixed with sialic acids which are substituted at C7 or C8 or which have two or three side chain O-acyl substituents. However, the interpretation of the results are complicated by observations that indicate that (a) treatment with 0.5m periodic acid either extracts or removes sialic acids from bovine submandibular gland glycoproteins, (b) some human colonic epithelial glycoproteins apparently contain a component other than 9-O-AcSA that oxidises slowly with periodic acid and (c) 1% periodic acid for 2h at room temperature oxidises a small but significant quantity of 9-O-AcSA, thus reducing the intensity of staining in methods II and III. It is concluded that when adequately controlled, methods I, II and III are capable of detecting 9-O-AcSA in glycoproteins containing large quantities of the sialic acid. However, these methods may not detect small quantities of 9-O-AcSA in the presence of large quantities of sialic acids which have O-acyl substitutents at positions C7 or C8 or which have two (C7C8, C7C9, C8C9) or three (C7C8C9) side chain O-acyl substituents. Thus, caution should be used when interpreting data that indicates the absence of 9-O-AcSA.  相似文献   

20.
Previous findings have demonstrated the presence of muramic acid and the lack of sialic acid in gastropod glycoconjugates from different tissues. The present study investigated the composition of muramyl derivatives in Mollusca Gastropoda tissue from the foot, mantle and periesophageal ganglia, using HRP-labeled lectins (LTA, UEA I, GSA IB4, GSA II, DBA, SBA, RCA II, WGA, PNA, ConA) and glycosidase digestion (neuraminidase, lysozyme, alpha-L-fucosidase, beta-N-acetylglucosaminidase, alpha-N-acetylgalactosaminidase). Muramyl derivatives from the tissue examined showed some differences related to the composition of the terminal disaccharides. Indeed, foot and mantle mucocytes exhibited muramic acid in a terminal position, linked to (subterminal) N-acetylgalactosamine, whereas in neuron cells muramic acid was present in an internal position and linked to N-acetylglucosamine. Diversities also occurred between foot and mantle mucocytes with respect to the receptor sugar for penultimate N-acetylgalactosamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号