首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified outer membrane proteins O-8 and O-9 were able to bind to the peptidoglycan sacculi in sodium dodecyl sulfate solution. Binding was stimulated by lipopolysaccharide, that of protein O-9 being stimulated more remarkably. Proteins which had been heated in sodium dodecyl sulfate solution did not bind to the peptidoglycan sacculi even in the presence of lipopolysaccharide, while heated lipopolysaccharide stimulated the binding of non-heated proteins. The removal by pronase of the lipoprotein covalently bound to the peptidoglycan sacculi did not change the protein binding ability of the sacculi.  相似文献   

2.
An ordered hexagonal lattice structure with a lattice constant of about 7 nm was reconstituted on the entire surface of the lipoprotein-bearing peptidoglycan from outer membrane protein O-8 and lipopolysaccharide. The lattice structure resembled that observed in the cell envelope which had been treated with sodium dodecyl sulfate (Steven et al., J. Cell Biol. 72:292-301, 1977). The omission of either O-8 or lipopolysaccharide resulted in the failure of formation of the lattice structure. No ordered lattice was formed on the peptidoglycan lacking the bound form of the lipoprotein. In the absence of the lipoprotein-bearing peptidoglycan, O-8 and lipopolysaccharide assembled into vesicles with an ordered hexagonal lattice, the lattice constant of which was also about 7 nm. A preliminary experiment indicated that protein O-9 gave the same result as did O-8. These results strongly indicate that O-8 and/or O-9 and lipopolysaccharide provide the ordered framework of the outer membrane and that the bound form of the lipoprotein plays a role in the holding of the framework on the peptidoglycan layer.  相似文献   

3.
1. The molecular arrangement of major outer membrane proteins O-8 and O-9 that exist as trimers has been studied by means of cross-linking with dimethylsuberimidate. 2. The cross-linked samples were examined on a urea/sodium dodecyl sulfate/polyacrylamide gel which was developed to separate cross-linked trimer and dimer of O-8 from those of O-9. 3. Cells simultaneously synthesizing both O-8 and O-9 formed heterotrimers (trimers containing both proteins) as well as homotrimers. 4. Quantitative analyses revealed that there was no discrimination between O-8 and O-9 in the assembly process to form trimers. 5. When cells were grown sequentially under two different sets of conditions so that the cells synthesized either one of the two proteins in the first stage and the other in the second stage of growth, no heterotrimers were formed. This result indicates that subunit exchange did not take place between trimers which had been incorporated into the outer membrane.  相似文献   

4.
Supplementation of the growth medium with high concentrations of sugars or low-molecular-weight dextrans results in a drastic change in the ratio of outer membrane proteins O-8 and O-9, due to induction of O-8 synthesis and suppression of O-9 synthesis. Sugars and dextrans of molecular weights greater than 600 to 700 switched the synthesis of O-9 to that of O-8 more effectively than those of lower molecular weight, although the effect was almost the same within each of the two groups irrespective of the differences in molecular weight within the group. Proteins O-8 or O-9, or both, are responsible for the formation of pores that allow the passive diffusion of hydrophilic molecules whose molecular weights are smaller than about 600 (T. Nakae, Biochem. Biophys. Res. Commun. 71:877-884, 1976). The results indicate that substances that cannot pass through the outer membrane switch the synthesis of O-9 to that of O-8 more effectively than those that can penetrate this membrane with the aid of O-8, O-9, or both. It is suggested that the osmotic pressure exerted on the outer membrane plays an important role in the regulation of synthesis of the two proteins.  相似文献   

5.
Outer membrane proteins of various strains of Escherichia coli were compared using three different systems of sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The outer membranes of E. coli K-12, E. coli B, and E. coli J-5 had distinctive protein compositions. As regards proteins which interact with peptidoglycan, E. coli K-12 contained O-8 and O-9, while E. coli B possessed one protein which migrated to the position of O-9. Although E. coli J-5 possessed two such proteins, O-8' and O-9', their positions on polyacrylamide gel were different from those of O-8 and O-9. Protein O-7, which migrates slightly more slowly than O-8, was found specifically in E. coli K-12. Proteins O-10 and O-11 were found in all strains tested, although the relative amounts were different depending on the strain. Strains of E. coli K-12 and E. coli J-5 gave three major bands, O-2a, O-2b, and O-3, in the region of high molecular weight. These proteins were repressed by iron in the cultivation media. Strains of E. coli B, on the other hand, gave only O-2b and O-3. E. coli J-5 gave two other major bands in this region, but the amounts were not controlled by iron in the cultivation media.  相似文献   

6.
The interaction with bacteriophage T4 of the cell surface of Escherichia coli K-12 reconstituted from outer membrane protein O-8, lipopolysaccharide, and the lipoprotein-bearing peptidoglycan sacculus was studied. The reconstituted cell surface was active as a receptor for the phage, resulting in the contraction of the tail sheath, a morphological change in the base plate which was accompanied by the extension of short tail pins down to the cell surface and the penetration of the needle through the cell surface. However, the ejection of phage deoxyribonucleic acid did not take place. Both O-8 and lipopolysaccharide were essential for the interaction. In the reconstitution, the wild-type lipopolysaccharide could not be replaced by either heptoseless lipopolysaccharide or lipid A. The lipoprotein-bearing peptidoglycan sacculus was also found to be an active component for the phage adsorption. The sacculus most likely functioned as a basal framework on which O-8 and lipopolysaccharide assembled to form a flat sheet which is large enough to interact with individual distal ends of long tail fibers of a single phage particle.  相似文献   

7.
Escherichia coli K-12 grown in iron-deficient media contained a large amount of outer membrane proteins O-2a, O-2b, and O-3, while cells grown in iron-supplemented media contained far smaller amounts of these proteins. The iron uptake by the iron-deficient cells was significantly stimulated in the presence of enterochelin, while that by the iron-rich cells was not. The outer membrane isolated from cells grown in the iron-deficient media showed enterochelin-stimulated binding of iron, while the outer membrane from iron-rich cells and cytoplasmic membranes from both types of cells did not show such binding activity. The amount of iron bound by the outer membrane was almost equivalent to the amount of O-2a, O2b, or O-3, irrespective of the amount of these proteins in the outer membrane, which is controlled by the amount of iron in the medium. Small particles rich in these proteins were prepared from cells by EDTA extraction. The particles were active in enterochelin-mediated iron binding and the amount of iron bound was equivalent to the amount of each of these proteins in the particles. Although the outer membrane of E. coli B was as active in iron binding as that of E. coli K-12, it did not possess an appreciable amount of O-2a. Gel electrophoretic analysis revealed that 9-2b and 9-3 were identical with the proteins missing mutants feuB and feuA, respectively.  相似文献   

8.
In Escherichia coli K12 the product of gene lamB is an outer membrane protein involved in the transport of maltose and maltodextrins and serving as a receptor for several bacteriophages including lambda. About 30 to 40% of this protein can be recovered associated to peptidoglycan when the cells are dissolved in sodium dodecyl sulfate in the presence of 2 mM Mg2+ ions. The bound protein can then be quantitatively eluted from peptidoglycan by incubating the complex in Triton X-100 and EDTA, or sodium dodecyl sulfate and NaCl. The protein eluted in such ways is still totally active in its phage-neutralizing activity. Two other membrane proteins known to behave similarly to the lamB protein are proteins Ia and Ib. However the binding of these proteins to peptidoglycan appears tighter, in several respects, than that of the lamB protein. The lamB protein may span the outer membrane since it appears to interact with the peptidoglycan on the inner side of this membrane while it is known to be accessible to both phages and antibodies at the cell surface.  相似文献   

9.
The outer membrane of Pseudomonas aeruginosa PAO contains six major proteins (proteins D, E, F, G,H, and I). Two of them (protein F and protein H) were found to be retained by the peptidoglycan layer when cell envelopes were extracted with 2% sodium dodecyl sulfate (SDS) solution at 35 degrees C. At higher temperature (greater than 55 degrees C), no proteins were retained by peptidoglycan. By making use of this property, purification of protein F and protein H was achieved. Three other major outer membrane proteins, D, E, and I were also isolated and characterized. Their amino acids compositions were determined. Circular dichroism spectra of these isolated proteins were measured in SDS solution. Protein F was rich in beta-structure, while protein I was rich in alpha-helix. When isolated protein F was heated (100 degrees C-15 min) in SDS solution, the circular dichroism spectrum changed significantly. In parallel with the conformational change, the electrophoretic mobility of protein F on urea-SDS polyacrylamide gel also changed. These results indicate that protein F is a so-called heat-modifiable protein.  相似文献   

10.
A filtration technique has been developed to trap the peptidoglycan sacculus for rapid extraction of the outer membrane protein F of Pseudomonas aeruginosa. The method consists of the following three steps: (i) removal of cell components except peptidoglycan associated with some proteins, (ii) trapping of peptidoglycan with a glass filter and (iii) extraction with a hot SDS solution of proteins, mainly F protein, associated with peptidoglycan. The method is simple and rapid, providing for efficient screening for protein F-deficient mutants of P. aeruginosa. Using this method of screening, three mutants were isolated among 500 mutagenized clones.  相似文献   

11.
The induction kinetics and surface accessibility of the outer membrane lipoprotein were studied in an Escherichia coli strain with the lpp gene under control of the lac promoter. Free lipoprotein appeared rapidly after induction with isopropyl-beta-D-thiogalactopyranoside and reached a steady-state level after 30 min. The newly induced lipoprotein was slowly bound to the peptidoglycan layer. Immunological methods were developed to detect lipoprotein accessible at the cell surface after various pretreatments as well as peptidoglycan-bound lipoprotein at the surface of isolated peptidoglycan sacculi with specific antibodies in combination with 125I-protein A. With these methods an increase in lipoprotein molecules at the cell surface and bound to the peptidoglycan sacculus could be detected following induction. The topology of newly synthesized lipoprotein was examined in thin sections as well as at the cell surface and the surface of the peptidoglycan sacculus with immunoelectron microscopy. Ultrathin cell sections, whole cells, and isolated peptidoglycan sacculi showed lipoprotein distributed homogeneously over the entire surface.  相似文献   

12.
The Tol-peptidoglycan-associated lipoprotein (PAL) system of Escherichia coli is a multiprotein complex of the envelope involved in maintaining outer membrane integrity. PAL and the periplasmic protein TolB, two components of this complex, are interacting with each other, and they have also been reported to interact with OmpA and the major lipoprotein, two proteins interacting with the peptidoglycan. All these interactions suggest a role of the Tol-PAL system in anchoring the outer membrane to the peptidoglycan. Therefore, we were interested in better understanding the interaction between PAL and the peptidoglycan. We designed an in vitro interaction assay based on the property of purified peptidoglycan to be pelleted by ultracentrifugation. Using this assay, we showed that a purified PAL protein interacted in vitro with pure peptidoglycan. A peptide competition experiment further demonstrated that the region from residues 89 to 130 of PAL was sufficient to bind the peptidoglycan. Moreover, the fact that this same region of PAL was also binding to TolB suggested that these two interactions were exclusive. Indeed, the TolB-PAL complex appeared not to be associated with the peptidoglycan. This led us to the conclusion that PAL may exist in two forms in the cell envelope, one bound to TolB and the other bound to the peptidoglycan.  相似文献   

13.
Lipopolysaccharide isolated from Escherichia coli K-12 did not inactivate phage T4, although the cell envelopes with 1% sodium deoxycholate resulted in the release of cytoplasmic membrane proteins, 70% of the lipopolysaccharide, and almost all of the phospholipid. The reconstitution of phage receptor activity was achieved from deoxycholate-soluble and -insoluble fractions by dialysis against a solution of magnesium chloride. Lipopolysaccharide was the only essential component in the deoxycholate-soluble fraction. PhageT4-resistant mutants YA21-6 and YA21-82, having defects in the deoxycholate-soluble and -insoluble fractions, respectively, were isolated. The deoxycholate-soluble fraction of YA21-6 possessed heptoseless lipopolysaccharide, and this defect was responsible for the phage resistance. The deoxycholate-insoluble fraction of YA21-82 lacked outer membrane protein O-8. The addition of O-8 to this fraction together with the wild-type lipopolysaccharide resulted in the appearance of the receptor activity. Furthermore, the reconstitution was successfully achieved with only O-8 and the wild-type lipopolysaccharide, indicating that O-8 was an essential component in the deoxycholate-insoluble fraction.  相似文献   

14.
The HPLC-type hydroxyapatite chromatography in the presence of sodium dodecyl sulfate (SDS) was assessed with special attention to the behavior of the surfactant. A significant amount of SDS was found to be adsorbed to the hydroxyapatite packed in the column from the starting buffer, 50 mM sodium phosphate buffer, pH 7.0, only when the buffer contained SDS in a concentration at or above its critical micelle concentration. When the phosphate buffer concentration was increased while the SDS concentration was kept at 1 mg/ml, the adsorbed surfactant was desorbed in advance of the release of proteins. Polypeptides derived from proteins could be successfully separated only when the column had been thoroughly equilibrated with the above-mentioned starting buffer solution. When a protein polypeptide complexed with SDS, which had been similarly equilibrated, was applied to the column, an amount of SDS corresponding to 75-90% (w/w) of the surfactant originally bound to the polypeptide was released upon its binding to the hydroxyapatite. On the other hand, porin, an Escherichia coli outer membrane protein, retaining its trimeric native structure in the presence of SDS, released a significantly smaller amount of SDS. When the membrane protein was denatured to give a single polypeptide, it behaved in a manner similar to that of the other protein polypeptides. The mechanism of binding of the protein polypeptides was discussed on the basis of these results. The native and denatured entities of porin could be efficiently separated as the result of the difference in their mode of interaction with the hydroxyapatite.  相似文献   

15.
Escherichia coli incorporates iron as a complex with enterochelin. By using mutants which lack one or the other, or both, of the outer membrane proteins, O-2b and O-3, we have shown that protein O-2b (feuB protein) is responsible for the primary binding of the iron-enterochelin complex to the outer membrane in the process of iron transport.  相似文献   

16.
The affinity to the matrix protein, one of the major outer membrane proteins of Escherichia coli, for the peptidoglycan was examined of extracting the cell envelope complex at 55 degrees C and 2% sodium dodecyl sulfate containing different amounts of NaCl. It was found that the matrix protein was extracted from the peptidoglycan of a mutant strain (lpo) that lacks another major membrane protein, the lipoprotein, at a lower NaCl concentration than was the matrix protein of the wild-type cell (lpo+). When the envelope fraction of the wild-type strain was treated with trypsin, which is known to cleave the bound-form lipoprotein from the peptidoglycan, the affinity of the matrix protein for the peptidoglycan decreased to the same level as that of the affinity of the matrix protein for the peptidoglycan of the mutant strain. It was further shown that the free-form lipoprotein was also retained in the matrix protein-peptidoglycan complex, although the extent of retention of the free form of the lipoprotein was less than that of the matrix protein. These results indicate that both the free and the bound forms of the lipoprotein are closely associated with the matrix protein and that the bound form of the lipoprotein plays and important role in the association between the matrix protein and the peptidoglycan.  相似文献   

17.
Outer membrane proteins O-8 and O-9 have been highly purified from a strain of Escherichia coli K-12 by Sephadex G-200 and DEAE-cellulose chromatographies. The amino acid compositions of the purified proteins were definitely different, although they showed marked similarities. The profiles of BrCN peptides of the two proteins were also different. None of the BrCN peptides were the same for the two proteins. Analysis of the first twelve N-terminal residues revealed that the two proteins are strikingly similar, but with differences in the third and the eleventh amino acid residues. It can be concluded that proteins O-8 and O-9 are products of different structural genes which developed by duplication of an ancestral genome followed by mutation.  相似文献   

18.
Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.  相似文献   

19.
The envelope components of nuclear bodies which were obtained from Escherichia coli W7 by a mild lysis method were investigated. By using 2,6-diaminopimelic acid (DAP) as precursor which is incorporated only into peptidoglycan in this strain it was found that the particles contained about 14% of the murein layer of the cell. The percentage of phosphatidylethanolamine was enriched at the cost of the other phospholipids in the nuclear bodies compared to whole cells. If lipids were labelled with 3H-palmitic acid the cytoplasmic and the outer membrane could be found after isopycnic centrifugation; however, when the cells were incubated with chloramphenicol, only the outer membrane was seen. The peptidoglycan and the proteins could be assigned only to the outer membrane. The DNA is also bound to the outer membrane. From these results it was concluded that (1) in all lysis methods the cytoplasmic membrane is more easily dissolved than the outer layers of the envelope, and (2) that there is a firm binding between DNA and the outer membrane in vivo.  相似文献   

20.
RmpM is a putative peptidoglycan binding protein from Neisseria meningitidis that has been shown to interact with integral outer membrane proteins such as porins and TonB-dependent transporters. Here we report the 1.9 A crystal structure of the C-terminal domain of RmpM. The 150-residue domain adopts a betaalphabetaalphabetabeta fold, as first identified in Bacillus subtilis chorismate mutase. The C-terminal RmpM domain is homologous to the periplasmic, C-terminal domain of Escherichia coli OmpA; these domains are thought to be responsible for non-covalent interactions with peptidoglycan. From the structure of the OmpA-like domain of RmpM, we suggest a putative peptidoglycan binding site and identify residues that may be essential for binding. Both the crystal structure and solution experiments indicate that RmpM may exist as a dimer. This would promote more efficient peptidoglycan binding, by allowing RmpM to interact simultaneously with two glycan chains through its C-terminal, OmpA-like binding domain, while its (structurally uncharacterized) N-terminal domain could stabilize oligomers of porins and TonB-dependent transporters in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号