首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Summary Cultured cells of Glycine max (L.) Merr. v. Corsoy were permeabilized by treatment with L--lysophosphatidylcholine (LPC). The permeabilized cells were capable of uptake and incorporation of deoxynucleoside triphosphates into DNA. Incorporation of exogenous nucleotides into DNA was linear for at least 90 minutes and the initial rate of incorporation approached 50% of the theoretical in vivo rate of DNA synthesis. However, DNA synthesis in the permeabilized cells was unaffected by the potent DNA polymerase inhibitor, aphidicolin. Analysis of newly synthesized DNA by molecular hybridization revealed that only organellar DNA was synthesized by the permeabilized cells. The LPC treated cells were also permeable to a protein as large as DNase I. The permeabilized cells were capable of RNA and protein synthesis as indicated by incorporation of radiolabeled UTP and leucine, respectively, into acid-precipitable material.  相似文献   

2.
A salt shock of 684mm NaCl reduced RNA and DNA synthesis to about 30% of the control level inSynechocystis. DNA synthesis recovered to the initial level within 4 h, while for recovery of RNA synthesis about 8 h were necessary. In cells completely adapted to different salt concentrations (from 171 to 1026mm NaCl), a continuous decrease in the RNA content with increasing salt concentrations up to 684mm NaCl was found, whereas the lowest DNA content was measured around 342mm NaCl, i.e., the salinity at which maximal growth occurred. With the uracil and thymidien incorporation technique, maxima in DNA and RNA synthesis were detected in control cells. Comparing these rates with nucleic acid synthesis rates calculated from the contents of DNA and RNA and the growth rates indicated that adaptation to 1026mm NaCl seemed to lead to an increased RNA turnover inSynechocystis. Analysis of protein synthesis with35S-methionine labeling showed alterations in salt-adapated cells ofSynechocystis. At least three proteins (20.5, 25.8, and 35.8 kDa) were synthesized with highest rates at salinities leading to maximal growth, the synthesis of nine proteins (12.5, 16.9, 19.2, 22.2, 24.7, 28.5, 30.5, 50.3, and 63.5 kDa) increased and that of several other proteins decreased with increasing salinity; but only three proteins (12.5, 22.2, and 30.5 kDa) accumulated under these conditions. The adaptation ofSynechocystis to enhanced salt concentrations led also to increased contents of glucosylglycerol, glycogen, and significant amounts of K+ as well as Na+ ions.  相似文献   

3.
Summary The model of mutation by transitional change (Freese 1959) predicts that a heritable change in genotype is established when two replications of DNA succeed the initial incorporation of an analogue. The model was tested in populations ofSalmonella typhimurium strainstryD-10 andtryD-79 whose division had been synchronized by fractional filtration. Mutation from auxotrophy to prototrophy (try try +) induced by 5-bromodeoxyuridine (BUDR) and 2-aminopurine (AP) occurred in accordance with DNA replication. Two subsequent DNA replications were necessary to obtain BUDR-induced prototrophs inD-79, one subsequent DNA replication was required for AP-induced prototrophs inD-79, while no subsequent DNA replication was necessary for AP-induced prototrophs inD-10. This was observed whether the mutagens were present continuously or during only the first replication and also when the cells were allowed to replicate their DNA without cell division in the presence of inhibitory concentrations of the base analogue or when protein synthesis was blocked in the presence of chloramphenicol. A statistical analysis of the patterns of mutant increase observed for six mutant strains was used to distinguish between errors in replication and errors in incorporation induced by the base analogues and thereby the base pair at the mutant site was identified.With 10 Figures in the TextSupported in part by grants from the American Cancer Society the U.S. Public Health Service and the National Science Foundation administered by ProfessorF. J. Ryan.  相似文献   

4.
Chatterjee A  Majee M  Ghosh S  Majumder AL 《Planta》2004,218(6):989-998
l-myo-Inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes conversion of glucose 6-phosphate to l-myo-inositol 1-phosphate, the first and the rate-limiting step in the production of inositol, and has been reported from evolutionarily diverse organisms. Two forms of the enzyme have been characterized from higher plants, viz. cytosolic and chloroplastic, and the presence of MIPS has been earlier reported from the cyanobacteria (e.g. Spirulina sp.), the presumed chloroplast progenitors. The present study demonstrates possible multiple forms of MIPS and identifies the gene for one of them in the cyanobacterium Synechocystis sp. PCC 6803. Following detection of at least two immunologically cross-reactive MIPS forms, we have been able to identify from the fully sequenced Synechocystis genome an as yet unassigned open reading frame (ORF), sll1722, coding for the approx. 50-kDa MIPS protein, by using biochemical, molecular and bioinformatics tools. The DNA fragment corresponding to sll1722 was PCR-amplified and functional identity of the gene was confirmed by a complementation assay in Saccharomyces cerevisiae mutants containing a disrupted INO1 gene for the yeast MIPS. The sll1722 PCR product was cloned in Escherichia coli expression vector pET20b and the isopropyl -d-thiogalactopyranoside (IPTG)-induced overexpressed protein product was characterized following complete purification. Comparison of the sll1722 sequences with other MIPS sequences and its phylogenetic analysis revealed that the Synechocystis MIPS gene is quite divergent from the others.Abbreviations CBB Coomassie Brilliant Blue - EST Expressed sequence tag - G6P d-Glucose 6-phosphate - IPTG Isopropyl -d-thiogalactopyranoside - MIPS lmyo-Inositol 1-phosphate synthase - ORF Open reading frame  相似文献   

5.
Ivleva  N. B.  Sidoruk  K. V.  Pakrasi  H. B.  Shestakov  S. V. 《Microbiology》2002,71(4):433-437
To understand the functional role of CtpB and CtpC proteins, which are similar to the C-terminal processing CtpA peptidase, the effect of the insertional inactivation of the ctpB and ctpCgenes on the phenotypic characteristics of Synechocystis sp. PCC 6803 was studied. The inactivation of the ctpC gene was found to be lethal to the cyanobacterium, which indicates a vital role of the CtpC protein. The mutant with the inactivated ctpB gene had the same photosynthetic characteristics as the wild-type strain. The double mutant ctpActpB with the two deleted genes was identical, in the phenotypic characteristics, to the mutant with a knock-out mutation in the ctpAgene, which was unable to grow photoautotrophically. The data obtained suggest that, in spite of the high similarity of the Ctp proteins, they serve different functions in Synechocystis sp. PCC 6803 cells and cannot compensate for each other.  相似文献   

6.
We examined the influence of overexpression of LetD (CcdB) protein, an inhibitor of DNA gyrase encoded by the F factor ofEscherichia coli, on DNA supercoiling and induction of heat shock proteins. Cells were transformed with a plasmid carrying the structural gene for LetD protein under control of thetac promoter, and LetD protein was induced by adding isopropyl-d-thiogalactopyranoside (IPTG) to the culture medium. Analysis by agarose gel electrophoresis in the presence of chloroquine revealed relaxation of plasmid DNA in cells depending on the concentration of IPTG employed for induction. Protein pulse-labeling experiments with [35S]methionine and cysteine revealed that synthesis of DnaK and GroEL proteins was also induced by IPTG, and concentrations necessary for DNA relaxation and induction of the heat shock proteins were much the same. Expression of mutant LetD protein lacking two amino acid residues at the C-terminus induced neither DNA relaxation nor the synthesis of DnaK and GroEL proteins. Induction of wild-type LetD protein but not mutant LetD protein markedly enhanced synthesis of 32. We interpret these results to mean that DNA relaxation in cells caused by the expression of LetD protein induces heat shock proteins via increased synthesis of 32.  相似文献   

7.
The previously constructed MSP (manganese stabilizing protein-psbO gene product)-free mutant of Synechococcus PCC7942 (Bockholt R, Masepohl B and Pistorius E K (1991) FEBS Lett 294: 59–63) and a newly constructed MSP-free mutant of Synechocystis PCC6803 were investigated with respect to the inactivation of the water-oxidizing enzyme during dark incubation. O2 evolution in the MSP-free mutant cells, when measured with a sequence of short saturating light flashes, was practically zero after an extended dark adaptation, while O2 evolution in the corresponding wild type cells remained nearly constant. It could be shown that this inactivation could be reversed by photoactivation. With isolated thylakoid membranes from the MSP-free mutant of PCC7942, it could be demonstrated that photoactivation required illumination in the presence of Mn2+ and Ca2+, while Cl addition was not required under our experimental conditions. Moreover, an extended analysis of the kinetic properties of the water-oxidizing enzyme (kinetics of the S3(S4)S0 transition, S-state distribution, deactivation kinetics) in wild type and mutant cells of Synechococcus PCC7942 and Synechocystis PCC6803 was performed, and the events possibly leading to the reversible inactivation of the water-oxidizing enzyme in the mutant cells are discussed. We could also show that the water-oxidizing enzyme in the MSP-free mutant cells is more sensitive to inhibition by added NH4Cl-suggesting that NH3 might be a physiological inhibitor of the water oxidizing enzyme in the absence of MSP.Abbreviations Chl chlorophyll - DCBQ 2,6-Dichloro-p-benzoquinone - MSP manganese stabilizing protein (psbO gene product) - PS II Photosystem II - WOE water oxidizing enzyme - WT wild type This paper is dedicated to Prof. Dr. Bernard Axelrod on the occasion of his 80th birthday  相似文献   

8.
A homozygous insertion mutant with the inactivated clpP2gene, which encodes the proteolytic subunit of ATP-dependent peptidase, was obtained in the unicellular cyanobacterium Synechocystissp. PCC 6803. The mutant cannot grow under photoautotrophic conditions, but cells grown under heterotrophic conditions in a glucose-containing medium have active photosystems Iand II(PS Iand PS II). The loss of capacity for photoautotrophic growth is determined by a high sensitivity of mutant cells to the inactivating effect of light. Their incubation under light with an intensity above 10 E m–2s–1inhibits cell growth in culture and causes degradation of photosynthetic pigments. It is proposed that the ClpP2 peptidase is involved in the protection of Synechocystis6803 cells from photoinhibition.  相似文献   

9.

Background

The cyanobacterium Synechocystis sp. PCC 6803 is widely used for research on photosynthesis and circadian rhythms, and also finds application in sustainable biotechnologies. Synechocystis is naturally transformable and undergoes homologous recombination, which enables the development of a variety of tools for genetic and genomic manipulations. To generate multiple gene deletions and/or replacements, marker-less manipulation methods based on counter-selection are generally employed. Currently available methods require two transformation steps with different DNA plasmids.

Results

In this study, we present a marker-less gene deletion and replacement strategy in Synechocystis sp. PCC 6803 which needs only a single transformation step. The method utilizes an nptI-sacB double selection cassette and exploits the ability of the cyanobacterium to undergo two successive genomic recombination events via double and single crossing-over upon application of appropriate selective procedures.

Conclusions

By reducing the number of cloning steps, this strategy will facilitate gene manipulation, gain-of-function studies, and automated screening of mutants.  相似文献   

10.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL - mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL - strain, greening occurred at the same rate at two different light intensities (5 and 50 E m-2s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding chelator protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

11.
-Mimosine (β-N-[3-hydroxy-4-pyridone]-α-aminopropionic acid)—a rare amino acid derived fromMimosaandLeucaenaplants—arrests cells reversibly late during G1 phase or at the beginning of S-phase. If mimosine were to arrest cells immediately before S-phase, it would provide a superb tool for the investigation of the initiation of DNA synthesis. Therefore, we reexamined the point of action of mimosine. Mitotic HeLa cells were released into 200 μMmimosine and grown for 10 h to block them, before the cells were permeabilized and the amino acid removed by washing them thoroughly. On addition of the appropriate triphosphates, DNA synthesis—measured by the incorporation of [32P]dTTP—began immediately; as it is known that such permeabilized cells cannot initiate DNA synthesis but can only resume elongating previously initiated chains, mimosine must arrest after DNA synthesis has begun. Moreover, cells grown in mimosine assembled functional replication factories—detected by immunolabeling after incorporation of biotin–dUTP—that were typical of those found early during S-phase. Disappointingly, it seems that mimosine—like aphidocolin—blocks only after cells enter S-phase.  相似文献   

12.
The gene encoding subunit IV of the cytochrome b6/f complex (petD) has been isolated from a genomic library of the unicellular cyanobacterium Synechocystis sp. PCC 6803. The coding region consists of 480 nucleotides and can code for a polypeptide with a molecular weight of 17.5 kDa. The deduced amino acid sequence shows high identity with the corresponding sequences of both the photoautotrophic prokaryote Nostos sp. PCC 7906 as well as of lower and higher photoautotrophic eukaryotes (e.g. Chlorella protothecoides, Nicotiana tabacum). Transformation of Synechocystis sp. PCC 6803 with a plasmid containing the cloned petD gene in which the coding sequence is interrupted by the aminoglycoside 3-phosphotransferase gene (aph) from Tn903 resulted in the formation of km resistant transformants. The molecular analysis of independent transformants revealed that all clones were merodiploid containing both uninterrupted wild-type as well as interrupted mutant petD copies. Approaches to segregate these two genomes were unsuccessful implying an essential function of the petD gene product in Synechocystis sp. PCC 6803.Abbreviations aph aminoglycoside 3-phosphotransferase - cpDNA chloroplast DNA - km kanamycin - PSI photosystem I - PSII photosystem II  相似文献   

13.
14.
The psaC gene, which encodes the 8.9 kDa iron-sulfur containing subunit of Photosystem I, has been sequenced from Synechocystis sp. PCC 6803 and shows greater similarity to reported plant sequences than other cyanobacterial psaC sequences. The deduced amino acid sequence of the protein encoded by the Synechocystis psaC gene is identical to the tobacco PSA-C sequence. In plants psaC is located in the small single-copy region of the chloroplast genome between two genes (designated ndhE and ndhD) with similarity to genes encoding subunits of the mitochondrial NADH Dehydrogenase Complex I. The 5 ndhE-psaC-ndhD3 gene arrangement of higher plants is only partially conserved in Synechocystis. An open reading frame (ORF) upstream of the Synechocystis psaC gene has 85% identity to the tobacco ndhE gene. Downstream of psaC there is a 273 bp ORF with 48% identity to the 5 portion of the tobacco ndhD gene (1527 bp). psaC, ndhE and the region of similarity to ndhD are present in a single copy in the Synechocystis genome. Part of the wheat ndhD gene was sequenced and used as a probe for the presence of the 3 portion of the ndhD gene. The wheat ndhD probe did not hybridize to Synechocystis or Anabaena sp. PCC 7120 genomic DNA, but did hybridize to Oenothera chloroplast DNA. These results indicate the complete ndhD gene is absent in two cyanobacteria, and raises the question of what role, if any, the ndhD gene product plays in the facultative heterotroph Synechocystis sp. PCC 6803.  相似文献   

15.
EGF-stimulated replication of specific genes was examined in primary hepatocyte cultures from mature (6 months) and senescent (24 months) rats. Basal and EGF-stimulated [3H]thymidine incorporation and DNA polymerase α activities, as well as total cellular DNA, were also assessed. The genes examined were dihydrofolate reductase (DHFR) and c-myc, as well as total mitochondrial DNA (mt DNA). Although [3H]thymidine incorporation, DNA polymerase α activity, total cellular DNA, DHFR, and c-myc gene specific DNA replication stimulated by EGF are reduced with age, mt DNA replication is not affected by either EGF or age. Chromosomal DNA replication is mediated mainly by DNA polymerase α while mt DNA replication is mediated by its own DNA polymerase γ. Thus, the age-related decline in stimulated DNA replication appears to be associated mainly with the DNA polymerase α activation pathway. J. Cell. Physiol. 176:32–39, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    16.

    Background

    To ensure reliable sources of energy and raw materials, the utilization of sustainable biomass has considerable advantages over petroleum-based energy sources. Photosynthetic algae have attracted attention as a third-generation feedstock for biofuel production, because algae cultivation does not directly compete with agricultural resources, including the requirement for productive land and fresh water. In particular, cyanobacteria are a promising biomass feedstock because of their high photosynthetic capability.

    Results

    In the present study, the expression of the flv3 gene, which encodes a flavodiiron protein involved in alternative electron flow (AEF) associated with NADPH-coupled O2 photoreduction in photosystem I, was enhanced in Synechocystis sp. PCC6803. Overexpression of flv3 improved cell growth with corresponding increases in O2 evolution, intracellular ATP level, and turnover of the Calvin cycle. The combination of in vivo13C-labeling of metabolites and metabolomic analysis confirmed that the photosynthetic carbon flow was enhanced in the flv3-overexpressing strain.

    Conclusions

    Overexpression of flv3 improved cell growth and glycogen production in the recombinant Synechocystis sp. PCC6803. Direct measurement of metabolic turnover provided conclusive evidence that CO2 incorporation is enhanced by the flv3 overexpression. Increase in O2 evolution and ATP accumulation indicates enhancement of the AEF. Overexpression of flv3 improves photosynthesis in the Synechocystis sp. PCC6803 by enhancement of the AEF.
      相似文献   

    17.
    The oxygenic phototrophic cyanobacterium Synechocystis sp. strain PCC 6803 inevitably evolves superoxide during photosynthesis. Synechocystis 6803 contains only one type of superoxide dismutase, designated as SodB; therefore, this protein plays an important role in preventing oxidative damages caused by light. Because there was no direct evidence that SodB in Synechocystis 6803 could be regulated by light, the relationship between SodB and light was investigated in the present study. The activity of SodB from the cells grown in continuous light culture was about 3.5-fold higher than that from the cells cultivated in continuous dark. Illumination maximally activated SodB within 12 h. The level of sodB mRNA increased 12-fold by light, and that of SodB protein proportionally. Therefore, the expression and activity of SodB from Synechocystis 6803 were dependent on the light.  相似文献   

    18.
    Lysate of chloroplasts prepared from liverwort Marchantia polymorpha L. cell suspension cultures incorporated [3H]-dTTP into acid insoluble materials when DNA was added exogenously as a template. The incorporation was highly dependent on the addition of template DNA, four deoxynucleoside triphosphates and magnesium ions (maximum incorporation at 5mM). Magnesium ions could be replaced by manganese ions. DNA synthesis inhibitors, N-ethylmaleimide (NEM) and ethidium bromide (EtBr), strongly inhibited the incorporation. Dideoxythymidine triphosphate (ddTTP), an inhibitor of DNA polymerases β and γ, inhibited the incorporation at the concentration of 50 μM (molar ratio of ddTTP/dTTP = 17). On the other hand, the incorporation by the chloroplast lysate was resistant to arabinofuranosyl cytosine triphosphate (araCTP) and aphidicolin as well as the RNA polymerase inhibitors, rifampicin and α-amanitin. The chloroplast lysate highly utilized denatured calf thymus DNA and bacteriophage ?X174 single-stranded DNA as templates when added exogenously, while a synthetic homopolymer, poly(rA)-oligo(dT)12 ~ 18, did not stimulate the incorporation at all. Autoradiographic analysis of DNA synthesized in isolated chloroplasts showed that the chloroplast DNA synthesis took place at several specific sites on the chloroplast DNA from cells of the liverwort, Marchantia polymorpha.  相似文献   

    19.
    Summary The phosphate self-exchange flux in resealed erythrocyte ghosts and in amphotericin B (5.5 m) permeabilized erythrocytes has been studied. The phosphate self-exchange flux exhibits an S-shaped concentration dependence and a self-inhibition in permeabilized red cells while in erythrocyte ghosts no self-inhibition of the phosphate flux has been observed. The apparent halfsaturation constants and the apparent Hill coefficients were assessed by the double reciprocal Hill plots of versus 1/[P] n . The phosphate half-saturation constants amount to approx. 125mm in ghosts and to about 75mm in permeabilized cells while the apparent Hill coefficients amount to 1.15 and to 1.65 (pH 7.2, 25°C), respectively. Both chloride and sulfate elicit a mixed-type inhibition of the phosphate self-exchange flux. In permeabilized cells, chloride and sulfate shift the flux optimum towards higher phosphate concentrations and reduce the apparent Hill coefficients. In erythrocyte ghosts, the apparent Hill coefficients are insensitive to these anions. The double reciprocal Hill plots indicate a mixed-type inhibition of the phosphate self-exchange flux by DNDS, salicylate and dipyridamole and a noncompetitive inhibition of the phosphate self-exchange flux by phlorhizin. By contrast, the Hill-Dixon plots for chloride and sulfate indicate a competitive inhibition of the phosphate self-exchange flux in erythrocyte ghosts and a mixed-type inhibition in permeabilized cells and provide Hill coefficients of greater than unity for chloride and sulfate. The Dixon plots for DNDS, salicylate, phlorhizin and dipyridamole show a noncompetitive inhibition of the phosphate flux and provide apparent Hill coefficients of 0.95–1.0 for inhibitor binding. Using the Debye-Hückel theory, the effects of ionic strength upon phosphate transport and inhibitor binding can be eliminated. The results of our studies provide strong evidence for the assumption that electrostatic forces are involved in phosphate transport and in inhibitor binding.  相似文献   

    20.
        
    The DNA polymerase a enzymes from human, and budding (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are homologous proteins involved in initiation and replication of chromosomal DNA. Sequence comparision of human DNA polymerase with that of S. cerevisiae and S. pombe shows overall levels of amino acid sequence identity of 32% and 34%, respectively. We report here that, despite the sequence conservation among these three enzymes, functionally active human DNA polymerase a fails to rescue several different conditional lethal alleles of the budding yeast POL1 gene at nonpermissive temperature. Furthermore, human DNA polymerase cannot complement a null allele of budding yeast POL1 either in germinating spores or in vegetatively growing cells. In fission yeast, functionally active human DNA polymerase is also unable to complement the disrupted pol::ura4 + allele in germinating spores. Thus, in vivo, DNA polymerase has stringent species specificity for initiation and replication of chromosomal DNA.Abbreviations 5-FOA 5-fluoroorotic acid - PMSF p-toluenesulfonyl fluoride  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号