首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspergillus niger B1, a recombinant strain carrying 20 extra copies of the native glucoamylase gene, was grown in glucose-limited chemostat cultures supplemented with various organic nitrogen sources (dilution rate 0.12 +/- 0.01 h(-1), pH 5.4). In cultures supplemented with l-alanine, l-methionine, casamino acids, or peptone, specific glucoamylase (GAM) production rapidly decreased to less than 20% of the initial level. Reducing the pH of the culture to 4.0 resulted in stable GAM production for up to 400 h. Morphological mutants (a light brown and a dark brown mutant) appeared in each fermentation and generally displaced B1. Light brown mutants had higher selection coefficients relative to B1 than dark brown mutants and became the dominant strain in all fermentations except those maintained at pH 4.0. Several mutants isolated from these cultures had reduced ability to produce GAM in batch culture, although few had lost copies of the glaA gene. Some mutants had methylated DNA.  相似文献   

2.
When grown on a medium containing 5 g maltodextrin L-1, Aspergillus niger transformant N402[pAB6-10]B1, which has an additional 20 copies of the glucoamylase (glaA) gene, produced 320 +/- 8 mg (mean +/- S.E.) glucoamylase (GAM) L-1 in batch culture and 373 +/- 9 mg GAM L-1 in maltodextrin-limited chemostat culture at a dilution rate of 0.13 h-1. These values correspond to specific production rates (qp) of 5.6 and 16.0 mg GAM [g biomass]-1 h-1, respectively. In maltodextrin-limited chemostat cultures grown at dilution rates from 0.06 to 0.14 h-1, GAM was produced by B1 in a growth-correlated manner, demonstrating that a continuous flow culture system operated at a high dilution rate is an efficient way of producing this enzyme. In chemostat cultures grown at high dilution rates, GAM production in chemostat cultures was repressed when the limiting nutrient was fructose or xylose, but derepressed when the limiting nutrient was glucose (qp, 12.0), potassium (6.2), ammonium (4.1), phosphate (2.0), magnesium (1.5) or sulphate (0.9). For chemostat cultures grown at a dilution rate of 0.13 h-1, the addition of 5 g mycopeptone L-1 to a glucose-mineral salts medium resulted in a 64% increase in GAM concentration (from 303 +/- 12 to 496 +/- 10 mg GAM L-1) and a 37% increase in specific production rate (from 12.0 +/- 0.4 to 16.4 +/- 1.6 mg GAM [g biomass]-1 h-1). However, although recombinant protein production was stable for at least 948 h (191 generations) when A. niger B1 was grown in chemostat culture on glucose-mineral salts medium, it was stable for less than 136 h (27 generations) on medium containing mycopeptone. The predominant morphological mutants occurring after prolonged chemostat culture were shown to have selective advantage in the chemostat over the parental strain. Compared to their parental strains, two morphological mutants had similar GAM production levels, while a third had a reduced production level. Growth tests and molecular analysis revealed that the number of glaA gene copies in this latter strain (B1-M) was reduced, which could explain its reduced GAM production. Shake-flask cultures carried out with the various morphological mutants revealed that in batch culture all three strains produced considerably less GAM than their parent strains and even less than N402. We show that physiological changes in these morphological mutants contribute to this decreased level of GAM production.  相似文献   

3.
产糖化酶黑曲霉固定化方法比较的研究   总被引:5,自引:0,他引:5  
采用海藻酸钙凝胶电埋法、以沸石、多孔聚酯等材料为固定化载体的吸附法固定黑曲霉(Aspergillus niger AS3.4309)菌丝细胞,以游离菌丝体作为对照,进行发酵产糖化酶的比较,结果表明:以聚酯泡沫作为固定化载体吸附固定化菌丝细胞产糖化酶活力最高。在产糖化酶的发酵过程中,与游离菌丝体细胞相比,固定化黑曲霉持续产酶时间有一定程度的延长。  相似文献   

4.
Using directed evolution and site‐directed mutagenesis, we have isolated a highly thermostable variant of Aspergillus niger glucoamylase (GA), designated CR2‐1 . CR2‐1 includes the previously described mutations Asn20Cys and Ala27Cys (forming a new disulfide bond), Ser30Pro, Thr62Ala, Ser119Pro, Gly137Ala, Thr290Ala, His391Tyr and Ser436Pro. In addition, CR2‐1 includes several new putative thermostable mutations, Val59Ala, Val88Ile, Ser211Pro, Asp293Ala, Thr390Ser, Tyr402Phe and Glu408Lys, identified by directed evolution. CR2‐1 GA has a catalytic efficiency (kcat/Km) at 35°C and a specific activity at 50°C similar to that of wild‐type GA. Irreversible inactivation tests indicated that CR2‐1 increases the free energy of thermoinactivation at 80°C by 10 kJ mol?1 compared with that of wild‐type GA. Thus, CR2‐1 is more thermostable (by 5 kJ mol?1 at 80°C) than the most thermostable A. niger GA variant previously described, THS8 . In addition, Val59Ala and Glu408Lys were shown to individually increase the thermostability in GA variants by 1 and 2 kJ mol?1, respectively, at 80°C.  相似文献   

5.
Aspergillus niger has been grown in glucose- and maltose-limited continuous cultures to determine the bioenergetic consequences of the production of the extracellular enzyme glucoamylase. Growth yields (g biomass per mol substrate) were high, indicating that growth was very efficient and protein production for biomass was not exceedingly energy consuming. It has been found that the energy costs for the production of this extracellular enzyme is very high. Depending on the efficiency of energy conservation the glucoamylase protein yield on ATP is between 1.3 and 2.6 g protein per mol ATP, which is equal or less than 10% of the theoretical maximum of 25.5. These high energy costs most probably have to be invested in the process of excretion. A comparison between an industrial over-producing strain and the wild typeAspergillus niger showed that this over-producing strain most probably is a regulatory mutant. Two regions of specific growth rates could be determined (one at specific growth rates lower and one at specific growth rates higher than 0.1 h-1), which are characterized by differences in mycelium morphology and a significant deviation from linearity in the linear equation for substrate utilization. Analysis of the region of specific growth rates higher than 0.1 h-1 yielded maintenance requirements of virtual zero. It has been concluded that for a good analysis of the growth behaviour of filamentour fungi the linear equation for substrate utilization is not suitable, since it contains no term for the process of differentiation.  相似文献   

6.
Glucoamylase has a wide range of applications in the production of glucose, antibiotics, amino acids, and other fermentation industries. Fungal glucoamylase, in particular, has attracted much attention because of its wide application in different industries, among which Aspergillus niger is the most popular strain producing glucoamylase. The low availability of NADPH was found to be one of the limiting factors for the overproduction of glucoamylase. In this study, 3 NADH kinases (AN03, AN14, and AN17) and malic enzyme (maeA) were overexpressed in aconidial A. niger by CRISPR/Cas9 technology, significantly increasing the size of the NADPH pool, resulting in the activity of glucoamylase was improved by about 70%, 50%, 90%, and 70%, respectively; the total secreted protein was increased by about 25%, 22%, 52%, and 26%, respectively. Furthermore, the combination of the mitochondrial NADH kinase (AN17) and the malic enzyme (maeA) increased glucoamylase activity by a further 19%. This study provided an effective strategy for enhancing glucoamylase production of A. niger.  相似文献   

7.
利用碳限制恒化实验研究了黑曲霉生长和糖化酶生产之间的相关性,结果表明当比生长速率低于0.068 h–1时,菌体生长与产酶是相关的,当比生长速率大于0.068 h–1时,菌体生长与产酶不相关。根据恒化实验结果获得黑曲霉葡萄糖底物消耗的Monod动力学模型,并结合葡萄糖和氧消耗的Herbert-Pirt方程和产物形成的Luedeking-Piret方程构建黑曲霉产糖化酶的黑箱模型。应用该模型设计指数补料分批发酵实验控制菌体比生长速率在0.05 h–1,使糖化酶的得率最高达到0.127 g糖化酶/g葡萄糖,并成功地使用模型描述了黑曲霉产糖化酶的发酵过程。实验值和模拟值进行比较表现出很好的适用性,表明黑箱模型可以用于指导黑曲霉产糖化酶发酵过程的设计和优化。  相似文献   

8.
9.
《New biotechnology》2008,25(6):437-441
Fungal cellulases are well-studied enzymes and are used in various industrial processes. Much of the knowledge of enzymatic depolymerization of cellulosic material has come from Trichoderma cellulase system. Species of Trichoderma can produce substantial amounts of endoglucanase and exoglucanase but very low levels of β-glucosidase. This deficiency necessitates screening of fungi for cellulytic potential. A number of indigenously isolated fungi were screened for cellulytic potential. In the present study, the kinetics of cellulase production from an indigenous strain of Aspergillus niger MS82 is reported. Product formation parameters of endoglucanase and β-glucosidase (Qp + Yp/s) indicate that A. niger MS82 is capable of producing moderate to high levels of both endoglucanase and β-glucosidase when grown on different carbon containing natural substrates, for example, grass, corncob, bagasse along side purified celluloses. Furthermore, it was observed that the production of endoglucanase reaches its maximum during exponential phase of growth, while β-glucosidase during the Stationary phase. Enzyme production by solid-state fermentation was also investigated and found to be promising. Highest production of cellulase was noted at pH 4.0 at 35 °C under submerged conditions. Growth and enzyme production was affected by variations in temperature and pH.  相似文献   

10.
Out of 1230 cultures grown from conidia of the strain Aspergillus niger C, which were previously treated with mutagens, 6 mutants were selected, 5 of which were characterized by considerably lower or lack of proteolytic activity than the parent strain. It was observed that glucoamylase activity and protein synthesis in the mutants examined were directly proportional to the rate of their proteolytic activity. From electrophoretic analysis it was found that in some protease-free mutants or with strongly reduced activity of this enzyme one or two glucoamylase fractions out of four occurring in the parent strain were absent.  相似文献   

11.
Effect of maltose on glucoamylase formation by Aspergillus niger   总被引:2,自引:1,他引:2       下载免费PDF全文
Low levels of glucoamylase are produced when Aspergillus niger is grown on sorbitol, but substitution of the latter by glucose, maltose, or starch results in greater formation of glucoamylase as measured by enzymatic activity. Both glucoamylase I and glucoamylase II are formed in a yeast extract medium; however, glucoamylase I appears to be the only form produced when ammonium chloride is the nitrogen source. Maltose or isomaltose (1.4 x 10(-4)m), but no other disaccharides or monosaccharides, dextrins, dextrans, or starches, stimulated glucoamylase formation when added to mycelia pregrown on sorbitol-ammonium salts. The induction of glucoamylase by maltose was independent of sulfate concentration but showed a dependency on low pH and the absence of utilizable carbon sources.  相似文献   

12.
Glucoamylase (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) from Aspergillus niger was purified to be free from alpha-amylase and phosphatase (glucose 6-phosphate as substrate). The phosphatase was well separated from the glucoamylase by phosphocellulose ion-exchange chromatography. The glucoamylase action was prevented by the esterified phosphate groups of the substrate. Thus, the extensive action of the glucoamylase on potato starch exposed the 6-posphorylglucosyl residue of the starch at the non-reducing terminal and large molecular weight limit dextrins remained. The concomitant action of the phosphatase was necessary for the complete degradation of the starch.  相似文献   

13.
The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5–6.0, the specific glucoamylase productivity and the specific growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase producivity increased linearly with the specific growth rate in the range 0–0.1 h−1 and was constant in the range 0.1–0.2 h−1. Maltose and maltodextrin were non-inducing carbon sources compared to glucose, and the maximum specific growth rate was 0.19 ± 0.02 h−1 irrespective of whether glucose or maltose was the carbon source. In fed-batch cultivations, glucoamylase titres of up to 6.5 g l−1 were obtained even though the strain contained only one copy of the glaA gene. Received: 5 May 1999 / Received revision: 7 September 1999 / Accepted: 17 September 1999  相似文献   

14.
15.
Characterization of a glucoamylase G2 from Aspergillus niger   总被引:2,自引:0,他引:2  
Peptide fragments were generated by enzymic or chemical degradation of the small form, G2, and the large form, G1, of Aspergillus niger glucoamylase (EC 3.1.2.3). The G2 form was either identical to residues Ala1-Pro512 or to Ala1-Ala514 of the G1 polypeptide chain containing 616 amino acid residues. Structural analysis of the O-linked carbohydrates from the 70-amino-acid-residues long extensively glycosylated segment of G2 revealed no significant differences in the contents of single mannose and oligosaccharide units in comparison to the corresponding region of G1. The results suggest that the present G2 form has been generated by limited proteolysis of the larger G1. In contradistinction to this, a recently reported splicing out of an intervening sequence from G1 mRNA leads to a smaller mRNA coding for a G2 protein product with a different COOH-terminal sequence than the G2 form described in the present work [Boel et al. (1984) EMBO J. 3, 1097-1102].  相似文献   

16.
A comparative structure–function study was performed to establish possible roles of carbohydrates in stabilization of glycoproteins, using glucoamylase (GA) as a model system. In addition to kinetic properties, stability toward elevated temperatures, extremes of pH, high salt concentrations together with circular dichroism, intrinsic/extrinsic fluorescence studies, proteolysis and affinity for interaction with hydrophobic ligands were investigated. Related to all the main properties examined, with one exception, glycosylation provided improvement in functional characteristics of the enzyme, especially in relation to its thermostability. Results are explained in terms of provision of stabilizing intermolecular interactions by the sugar molecules. The improvement in protein rigidity together with reduction of surface hydrophobicity appear to be especially important in relation to prevention of aggregation, an important mechanism of irreversible thermoinactivation, occurring at elevated temperatures.  相似文献   

17.
Summary Two proteases from Aspergillus niger C post-culture medium were isolated by fractionation on a DEAE-sepharose column and ultrafiltration. The four fractions of glucoamylase activity (GA1, GA2, GA3 and GA4) present in the medium showed different susceptibility to the influence of proteases. The effects of proteases on the different glucoamylase fractions during the growth of the fungus are demonstrated. The activity was found to decrease at the beginning of the culture, but by its end there was a stimulation of GA4 glucoamylase. After treating GA2 and GA3 with protease II, a new additional fraction of glucoamylase was detected.  相似文献   

18.
The applicability of crosslinking an enzyme to an oxidized polysaccharide by reductive alkylation to enhance thermostability has been investigated for glucoamylase from Aspergillus niger. Direct covalent coupling of the enzyme to periodate-oxidized dextran in the presence of NaBH(3)CN results in a conjugate which has thermal properties similar to those of the native enzyme. Our working hypothesis postulates that enhancement of thermostability will result from rigidification of the protein's conformation subsequent to the formation of multiple covalent bonds between the protein and the support. On the basis of the known characteristics of glucoamylase from Aspergillus niger, it would seem necessary to introduce additional amino groups in the polypeptide chain of the protein. The incorporation of new amino groups was performed in two phases. First, the glycosidic part of glucoamylase was oxidized by periodate and the resulting aldehyde groups were reductively aminated by a diaminoalkane and NaBH(3)CIM. Secondly, additional amino groups were introduced on carboxyl functions into the previously aminated glucoamylase by a diaminoalkane and a water-soluble carbodiimide in the presence of maltose to protect the active site. The final derivative was then coupled to periodate-oxidized dextran T-70 in the presence of NaBH(3)CN. Starting with native glucoamylase, three successive operations give rise to a conjugate which retained 27% of the initial activity when measured with soluble starch and 39% when measured with maltopentaose. Using substrates of various sizes, it was observed that steric hindrance at the active site may result from covalent coupling to dextran T-70. It was demonstrated in heat inactivation experiments that the thermostability of the conjugate was in all cases superior to that of the native enzymes. Finally, it was observed that the operational stability of the conjugate was at least twice that of native glucoamylase at 70 degrees C on 18% maltodextrin. Additional experiments rule out the possibility that thermosta-bilization of the complex is due to other reasons than the increase in the amino content of the protein prior to crosslinking. Neither chemical modification, reticulation nor change in the net charge of the protein resulted in a derivative of glucoamylase which presented enhanced thermostability after conjugation. We conclude that for enzymes which have a low content of available amino groups, the thermostabilization method proposed previously by the present authors may still be applicable if additional amino groups are introduced into the protein prior to its crosslinking to an oxidized polysaccharide. This new example reinforces the generality of this method of stabilization.  相似文献   

19.
When wild-type Aspergillus niger N402 and a glucoamylase-overproducing transformant were grown in recycling culture without a nitrogen source, hyphal tip extension and glucoamylase production still occurred, but overproduction of glucoamylase by the transformant strain stopped. The mycelium retained a low metabolic activity. Light micrographs of mycelial samples showed that some hyphae were broken at their tip and partially empty, while after continuing recycling fermentation for more than 500 h many small and empty pieces of broken mycelium could be found. A model has been developed to calculate the mycelial growth and death rates. The mycelial death rate just exceeded the mycelial growth rate and as a consequence the amount of biomass in the fermentor vessel slightly decreased. It is concluded that the cytoplasmic contents of broken mycelial threads were released into the medium and acted as a nitrogen source for the growing parts of the mycelium.  相似文献   

20.
Summary The effect of methanol on the ability of several strains of Aspergillus to produce citric acid from galactose has been investigated. In the absence of methanol, very little production (less than 1 g/l) was observed. In the presence of methanol (final concentration 1% v/v), however, citric acid production and yeilds were increased considerably. Strong relationships were observed between citric acid production and the activities of the enzymes 2-oxoglutarate dehydrogenase and pyruvate carboxylase in cell-free extracts. During citric acid production, in the presence of methanol, the activity of 2-oxoglutarate dehydrogenase was low and that of pyruvate carboxylase high. In the absence of methanol, where little citric acid was produced, the reverse was true. It is suggested that the presence of methanol may increase the permeability of the cell to citrate, and the cell responds to the diminished intracellular level by increasing production via repression of 2-oxoglutarate dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号