首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desmin (DES) mutations have been recognized as a cause of desmin-related myopathy (OMIM 601419), or desminopathy, a disease characterized by progressive limb muscle weakness and accumulation of desmin-reactive granular aggregates in the myofibers. We have studied three families with skeletal or cardioskeletal myopathy caused by small in-frame deletions in the desmin gene. The newly identified in-frame deletions E359_S361del and N366del alter the heptad periodicity within a critical 2B coiled-coil segment. Structural analysis reveals that the E359_S361 deletion introduces a second stutter immediately downstream of the naturally occurring stutter, thus doubling the extent of the local coiled-coil unwinding. The N366del mutation converts the wild-type stutter into a different type of discontinuity, a stammer. A stammer, as opposed to a stutter, is expected to cause an extra overwinding of the coiled-coil. These mutations alter the coiled-coil geometry in specific ways leading to fatal damage to desmin filament assembly. Expression studies in two cell lines confirm the inability of desmin molecules with this changed architecture to polymerize into a functional filamentous network. This study provides insights into molecular pathogenetic mechanisms of desmin mutation-associated skeletal and cardioskeletal myopathy.Electronic database information: nucleotide and amino acid sequence data are available in the GenBank database () under accession nos. AY114212 for E359_S361del and AF21879 for N366del mutations  相似文献   

2.
It has been documented that mutations in the human desmin gene lead to a severe type of myofibrillar myopathy, termed more specifically desminopathy, which affects cardiac and skeletal as well as smooth muscle. We showed recently that 14 recombinant versions of these disease-causing desmin variants, all involving single amino acid substitutions in the alpha-helical rod domain, interfere with in vitro filament formation at distinct stages of the assembly process. We now provide mechanistic details of how these mutations affect the filament assembly process by employing analytical ultracentrifugation, time-lapse electron microscopy of negatively stained and glycerol-sprayed/low-angle rotary metal-shadowed samples, quantitative scanning transmission electron microscopy, and viscometric studies. In particular, the soluble assembly intermediates of two of the mutated proteins exhibit unusually high s-values, compatible with octamers and other higher-order complexes. Moreover, several of the six filament-forming mutant variants deviated considerably from wild-type desmin with respect to their filament diameters and mass-per-length values. In the heteropolymeric situation with wild-type desmin, four of the mutant variants caused a pronounced "hyper-assembly", when assayed by viscometry. This indicates that the various mutations may cause abortion of filament formation by the mutant protein at distinct stages, and that some of them interfere severely with the assembly of wild-type desmin. Taken together, our findings provide novel insights into the basic intermediate filament assembly mechanisms and offer clues as to how amino acid changes within the desmin rod domain may interfere with the normal structural organization of the muscle cytoskeleton, eventually leading to desminopathy.  相似文献   

3.
Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.  相似文献   

4.
5.
Mutations in the intermediate filament (IF) protein desmin cause severe forms of myofibrillar myopathy characterized by partial aggregation of the extrasarcomeric desmin cytoskeleton and structural disorganization of myofibrils. In contrast to prior expectations, we showed that some of the known disease-causing mutations, such as DesA360P, DesQ389P and DesD399Y, are assembly-competent and do allow formation of bona fide IFs in vitro and in vivo. We also previously demonstrated that atomic force microscopy can be employed to measure the tensile properties of single desmin IFs. Using the same approach on filaments formed by the aforementioned mutant desmins, we now observed two different nanomechanical behaviors: DesA360P exhibited tensile properties similar to that of wild-type desmin IFs, whereas DesQ389P and DesD399Y exhibited local variations in their tensile properties along the filament length. Based on these findings, we hypothesize that DesQ389P and DesD399Y may cause muscle disease by altering the specific biophysical properties of the desmin filaments, thereby compromising both its mechanosensing and mechanotransduction ability.  相似文献   

6.
Mutations in desmin have been associated with a subset of human myopathies. Symptoms typically appear in the second to third decades of life, but in the most severe cases can manifest themselves earlier. How desmin mutations lead to aberrant muscle function, however, remains poorly defined. We created a series of four mutations in rat desmin and tested their in vitro filament assembly properties. RDM-G, a chimera between desmin and green fluorescent protein, formed protofilament-like structures in vitro. RDM-1 and RDM-2 blocked in vitro assembly at the unit-length filament stage, while RDM-3 had more subtle effects on assembly. When expressed in cultured rat neonatal cardiac myocytes via adenovirus infection, these mutant proteins disrupted the endogenous desmin filament to an extent that correlated with their defects in in vitro assembly properties. Disruption of the desmin network by RDM-1 was also associated with disruption of plectin, myosin, and alpha-actinin organization in a significant percentage of infected cells. In contrast, expression of RDM-2, which is similar to previously characterized human mutant desmins, took longer to disrupt desmin and plectin organization and had no significant effect on myosin or alpha-actinin organization over the 5-day time course of our studies. RDM-3 had the mildest effect on in vitro assembly and no discernable effect on either desmin, plectin, myosin, or alpha-actinin organization in vivo. These results indicate that mutations in desmin have both direct and indirect effects on the cytoarchitecture of cardiac myocytes.  相似文献   

7.
Assembly of amino-terminally deleted desmin in vimentin-free cells   总被引:13,自引:9,他引:4       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1971-1985
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin- free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.  相似文献   

8.
Desmin interacts with nebulin establishing a direct link between the intermediate filament network and sarcomeres at the Z-discs. Here, we examined a desmin mutation, E245D, that is located within the coil IB (nebulin-binding) region of desmin and that has been reported to cause human cardiomyopathy and skeletal muscle atrophy. We show that the coil IB region of desmin binds to C-terminal nebulin (modules 160-164) with high affinity, whereas binding of this desmin region containing the E245D mutation appears to enhance its interaction with nebulin in solid-phase binding assays. Expression of the desmin-E245D mutant in myocytes displaces endogenous desmin and C-terminal nebulin from the Z-discs with a concomitant increase in the formation of intracellular aggregates, reminiscent of a major histological hallmark of desmin-related myopathies. Actin filament architecture was strikingly perturbed in myocytes expressing the desmin-E245D mutant because most sarcomeres contained elongated or shorter actin filaments. Our findings reveal a novel role for desmin intermediate filaments in modulating actin filament lengths and organization. Collectively, these data suggest that the desmin E245D mutation interferes with the ability of nebulin to precisely regulate thin filament lengths, providing new insights into the potential molecular consequences of expression of certain disease-associated desmin mutations.  相似文献   

9.
Desmin, being a major intermediate filament of muscle cells, contributes to stabilization and positioning of mitochondria. Desmin mutations have been reported in conjunction with skeletal myopathies accompanied by mitochondrial dysfunction. Depending on the ability to promote intracellular aggregates formation, mutations can be considered aggregate-prone or non-aggregate-prone. The aim of the present study was to describe how expression of different desmin mutant isoforms effects mitochondria and contributes to the development of myocyte dysfunction. To achieve this goal, two non-aggregate-prone (Des S12F and Des A213V) and four aggregate-prone (Des L345P, Des A357P, Des L370P, Des D399Y) desmin mutations were expressed in skeletal muscle cells. We showed that all evaluated mutations affected the morphology of mitochondrial network, suppressed parameters of mitochondrial respiration, diminished mitochondrial membrane potential, increased ADP/ATP ratio, and enhanced mitochondrial DNA (mtDNA) release. mtDNA was partially secreted through exosomes as demonstrated by GW4869 treatment. Dysfunction of mitochondria was observed regardless the type of mutation: aggregate-prone or non-aggregate-prone. However, expression of aggregate-prone mutations resulted in more prominent phenotype. Thus, in this comparative study of six pathogenic desmin mutations that cause skeletal myopathy development, we confirmed a role of mitochondrial dysfunction and mtDNA release in the pathogenesis of desmin myopathies, regardless of the aggregation capacity of the mutated desmin.  相似文献   

10.
Desmin intermediate filaments (DIFs) form an intricate meshwork that organizes myofibers within striated muscle cells. The mechanisms that regulate the association of desmin to sarcomeres and their role in desminopathy are incompletely understood. Here we compare the effect nebulin binding has on the assembly kinetics of desmin and three desminopathy-causing mutant desmin variants carrying mutations in the head, rod, or tail domains of desmin (S46F, E245D, and T453I). These mutants were chosen because the mutated residues are located within the nebulin-binding regions of desmin. We discovered that, although nebulin M160–164 bound to both desmin tetrameric complexes and mature filaments, all three mutants exhibited significantly delayed filament assembly kinetics when bound to nebulin. Correspondingly, all three mutants displayed enhanced binding affinities and capacities for nebulin relative to wild-type desmin. Electron micrographs showed that nebulin associates with elongated normal and mutant DIFs assembled in vitro. Moreover, we measured significantly delayed dynamics for the mutant desmin E245D relative to wild-type desmin in fluorescence recovery after photobleaching in live-cell imaging experiments. We propose a mechanism by which mutant desmin slows desmin remodeling in myocytes by retaining nebulin near the Z-discs. On the basis of these data, we suggest that for some filament-forming desmin mutants, the molecular etiology of desminopathy results from subtle deficiencies in their association with nebulin, a major actin-binding filament protein of striated muscle.  相似文献   

11.
Desmin, being a major intermediate filament of mature muscle cell, interacts with mitochondria within the cell and participates in mitochondria proper localization. The goal of the present study was to assess the effect of aggregate-prone and non-aggregate-prone desmin mutations on mitochondrial calcium uptake. Primary murine satellite cells were transduced with lentiviruses carrying desmin in wild type or mutant form, and were induced to differentiate into myotubes. Four mutations resulting in different degree of desmin aggregates formation were analyzed. Tail domain mutation Asp399Tyr has the mildest impact on desmin filament polymerization, rod domain mutation Ala357Pro causes formation of large aggregates composed of filamentous material, and Leu345Pro and Leu370Pro are considered to be the most severest in their impact on desmin polymerization and structure. For mitochondrial calcium measurement cells were loaded with rhod 2-AM. We found that aggregate-prone mutations significantly decreased [Ca2+]mit, whereas non-aggregate-prone mutations did not decrease [Ca2+]mit. Moreover aggregate-prone desmin mutations resulted in increased resting cytosolic [Ca2+]. However this increase was not accompanied by any alterations in sarcoplasmic reticulum calcium release. We suggest that the observed decline in [Ca2+]mit was due to desmin aggregate accumulation resulting in the loss of desmin mitochondria interactions.  相似文献   

12.
Using immunoelectron microscopy it is demonstrated that desmin subunits missing their complete carboxy-terminal domain are incapable of homopolymeric filament formation in vivo. Furthermore it is shown that, in vimentin-containing cells, desmin integrates into preexisting vimentin filaments resulting in desmin/vimentin heteropolymers. Removal of the amino-terminal or both nonhelical end domains of desmin increases Triton X-100 solubility of the mutant desmin subunits. Expression of desmin mutants containing deletions in the C-terminal part of the rod in vimentin-free cells results in an increase of the Triton X-100 solubility too. In contrast, if expressed in vimentin-containing cells, these mutant subunits remain in the Triton X-100 insoluble fraction. Deletion of the nonhelical carboxy-terminal domain only has no effect on solubility. In vimentin-free cells, stably expressed desmin subunits missing their amino-terminal domains display a slightly higher turnover rate compared to wild-type desmin. Transiently expressed desmin subunits missing 18 or more carboxy-terminal residues of the rod domain are rapidly degraded in vimentin-free cells. In vimentin-containing cells, turnover rates were much less pronounced. Finally, by using site-directed mutagenesis, we were able to map specific residues important for de novo filament assembly within the amino-terminal domain and in the conserved part at the C-terminus of the alpha-helical domain.  相似文献   

13.
Desmin, the major intermediate filament (IF) protein of muscle, is evolutionarily highly conserved from shark to man. Recently, an increasing number of mutations of the desmin gene has been described to be associated with human diseases such as certain skeletal and cardiac myopathies. These diseases are histologically characterised by intracellular aggregates containing desmin and various associated proteins. Although there is progress regarding our knowledge on the cellular function of desmin within the cytoskeleton, the impact of each distinct mutation is currently not understood at all. In order to get insight into how such mutations affect filament assembly and their integration into the cytoskeleton we need to establish IF structure at atomic detail. Recent progress in determining the dimer structure of the desmin-related IF-protein vimentin allows us to assess how such mutations may affect desmin filament architecture.  相似文献   

14.
Mutations in the genes that code for collagen VI subunits, COL6A1, COL6A2, and COL6A3, are the cause of the autosomal dominant disorder, Bethlem myopathy. Although three different collagen VI structural mutations have previously been reported, the effect of these mutations on collagen VI assembly, structure, and function is currently unknown. We have characterized a new Bethlem myopathy mutation that results in skipping of COL6A1 exon 14 during pre-mRNA splicing and the deletion of 18 amino acids from the triple helical domain of the alpha1(VI) chain. Sequencing of genomic DNA identified a G to A transition in the +1 position of the splice donor site of intron 14 in one allele. The mutant alpha1(VI) chains associated intracellularly with alpha2(VI) and alpha3(VI) to form disulfide-bonded monomers, but further assembly into dimers and tetramers was prevented, and molecules containing the mutant chain were not secreted. This triple helical deletion thus resulted in production of half the normal amount of collagen VI. To further explore the biosynthetic consequences of collagen VI triple helical deletions, an alpha3(VI) cDNA expression construct containing a 202-amino acid deletion within the triple helix was produced and stably expressed in SaOS-2 cells. The transfected mutant alpha3(VI) chains associated with endogenous alpha1(VI) and alpha2(VI) to form collagen VI monomers, but dimers and tetramers did not form and the mutant-containing molecules were not secreted. Thus, deletions within the triple helical region of both the alpha1(VI) and alpha3(VI) chains can prevent intracellular dimer and tetramer assembly and secretion. These results provide the first evidence of the biosynthetic consequences of structural collagen VI mutations and suggest that functional protein haploinsufficiency may be a common pathogenic mechanism in Bethlem myopathy.  相似文献   

15.
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), an autosomal, dominantly inherited neurodegenerative disorder caused by tau gene mutations, is neuropathologically characterized by intraneuronal filamentous inclusions of hyperphosphorylated tau protein. Biochemical and immunocytochemical analyses have shown that only mutant tau is deposited in patients harboring P301L missense mutation, whereas both wild-type and mutant tau are deposited in patients harboring R406W mutation (Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Kamphorst, W., Nagashima, K., and Ihara, Y. (2001) J. Neuropathol. Exp. Neurol. 60, 872- 884 and Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Heutink, P., van Swieten, J. C., Nagashima, K., and Ihara, Y. (2001) Am. J. Pathol. 158, 373-379). Here we have tested the nucleation ability of monomeric tau and the seeding ability of fibrillogenic nuclei obtained from bacterially expressed human tau. P301L mutant tau showed a higher nucleation ability than wild-type tau, whereas R406W mutant tau shows similar ability to wild-type tau. Surprisingly, fibrillogenic nuclei composed of P301L mutant tau enhanced the assembly of P301L mutant tau into filaments but did not promote filament formation from wild-type tau. In contrast, nuclei composed of R406W mutant tau supported filament formation from both wild-type tau and R406W mutant tau, as did nuclei composed of wild-type tau. Proteolytic analyses indicated that the substructure of nuclei composed of P301L mutant tau was different from that of nuclei composed of wild-type or R406W mutant tau. Thus, the interaction between fibrillogenic nuclei and monomeric protein appears to play an important role in the mechanism of tau filament assembly.  相似文献   

16.
To identify sites of self-association in type III intermediate filament (IF) proteins, we have taken an "anti-idiotypic antibody" approach. A mAb (anti-Ct), recognizing a similar feature near the end of the rod domain of vimentin, desmin, and peripherin (epsilon site or epsilon epitope), was characterized. Anti-idiotypic antibodies, generated by immunizing rabbits with purified anti-Ct, recognize a site (presumably "complementary" to the epsilon epitope) common among vimentin, desmin, and peripherin (beta site or beta epitope). The beta epitope is represented in a synthetic peptide (PII) modeled after the 30 COOH-terminal residues of peripherin, as seen by comparative immunoblotting assays. Consistent with the idea of an association between the epsilon and the beta site, PII binds in vitro to intact IF proteins and fragments containing the epsilon epitope, but not to IF proteins that do not react with anti-Ct. Microinjection experiments conducted in vivo and filament reconstitution assays carried out in vitro further demonstrate that "uncoupling" of this site-specific association (by competition with PII or anti-Ct) interferes with normal IF architecture, resulting in the formation of filaments and filament bundles with diameters much greater than that of the normal IFs. These thick fibers are very similar to the ones observed previously when a derivative of desmin missing 27 COOH-terminal residues was assembled in vitro (Kaufmann, E., K. Weber, and N. Geisler. 1985. J. Mol. Biol. 185:733-742). As a molecular explanation, we propose here that the epsilon and the beta sites of type III IF proteins are "complementary" and associate during filament assembly. As a result of this association, we further postulate the formation of a surface-exposed "loop" or "hairpin" structure that may sterically prevent inappropriate filament-filament aggregation and regulate filament thickness.  相似文献   

17.
Mutations in the protein alpha-tropomyosin (Tm) can cause a disease known as familial hypertrophic cardiomyopathy. In order to understand how such mutations lead to protein dysfunction, three point mutations were introduced into cDNA encoding the human skeletal tropomyosin, and the recombinant Tms were produced at high levels in the yeast Pichia pastoris. Two mutations (A63V and K70T) were located in the N-terminal region of Tm and one (E180G) was located close to the calcium-dependent troponin T binding domain. The functional and structural properties of the mutant Tms were compared to those of the wild type protein. None of the mutations altered the head-to-tail polymerization, although slightly higher actin binding was observed in the mutant Tm K70T, as demonstrated in a cosedimentation assay. The mutations also did not change the cooperativity of the thin filament activation by increasing the concentrations of Ca2+. However, in the absence of troponin, all mutant Tms were less effective than the wild type in regulating the actomyosin subfragment 1 Mg2+ ATPase activity. Circular dichroism spectroscopy revealed no differences in the secondary structure of the Tms. However, the thermally induced unfolding, as monitored by circular dichroism or differential scanning calorimetry, demonstrated that the mutants were less stable than the wild type. These results indicate that the main effect of the mutations is related to the overall stability of Tm as a whole, and that the mutations have only minor effects on the cooperative interactions among proteins that constitute the thin filament.  相似文献   

18.
Plectin (M(r) > 500,000) is a versatile and widely expressed cytolinker protein. In striated muscle it is predominantly found at the Z-disc level where it colocalizes with the intermediate filament protein desmin. Both proteins show altered labeling patterns in tissues of muscular dystrophy patients. Moreover, mutations in the plectin gene lead to the autosomal recessive human disorder epidermolysis bullosa simplex with muscular dystrophy, and defects in the desmin gene have been shown to cause familiar cardiac and skeletal myopathy. Since intermediate filaments (IFs) in striated muscle tissue have been found to be intimately associated with mitochondria, we investigated whether plectin is involved in this association. Using postembedding immunogold labeling of Lowicryl sections and immunogold labeling of ultrathin cryosections, we show that plectin is associated with desmin IFs linking myofibrils to mitochondria at the level of the Z-disc and along the entire length of the sarcomere. The localization of plectin label at the mitochondrial membrane itself was consistent with a putative linker function of plectin between desmin IFs and the mitochondrial surface. In mitochondrion-rich muscle fibers, both plectin and desmin were part of an ordered arrangement of mitochondrial side branches, which wound around myofibrils adjacent to the Z-discs and were anchored into a filamentous network transversing from one fibril to the other. The association of mitochondria with plectin and IFs was seen also in tissues without regular distribution patterns of mitochondria, such as heart muscle and neonatal skeletal muscle tissues. These data were supplemented with in vitro binding assays showing direct interaction of plectin with desmin via its carboxy-terminal IF-binding domain. As a cytolinker protein associated with mitochondria and desmin IFs, plectin could play an important role in the positioning and shape formation, in particular branching, of mitochondrial organelles in striated muscle tissues.  相似文献   

19.
Assembly and maintenance of myofibrils require dynamic regulation of the actin cytoskeleton. In Caenorhabditis elegans, UNC-60B, a muscle-specific actin depolymerizing factor (ADF)/cofilin isoform, is required for proper actin filament assembly in body wall muscle (Ono, S., D.L. Baillie, and G.M. Benian. 1999. J. Cell Biol. 145:491--502). Here, I show that UNC-78 is a homologue of actin-interacting protein 1 (AIP1) and functions as a novel regulator of actin organization in myofibrils. In unc-78 mutants, the striated organization of actin filaments is disrupted, and large actin aggregates are formed in the body wall muscle cells, resulting in defects in their motility. Point mutations in unc-78 alleles change conserved residues within different WD repeats of the UNC-78 protein and cause less severe phenotypes than a deletion allele, suggesting that these mutations partially impair the function of UNC-78. UNC-60B is normally localized in the diffuse cytoplasm and to the myofibrils in wild type but mislocalized to the actin aggregates in unc-78 mutants. Similar Unc-78 phenotypes are observed in both embryonic and adult muscles. Thus, AIP1 is an important regulator of actin filament organization and localization of ADF/cofilin during development of myofibrils.  相似文献   

20.
Thymidine kinase 2 (TK2) is a mitochondrial (mt) pyrimidine deoxynucleoside salvage enzyme involved in mtDNA precursor synthesis. The full-length human TK2 cDNA was cloned and sequenced. A discrepancy at amino acid 37 within the mt leader sequence in the DNA compared with the determined peptide sequence was found. Two mutations in the human TK2 gene, His-121 to Asn and Ile-212 to Asn, were recently described in patients with severe mtDNA depletion myopathy (Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001) Nat. Genet. 29, 342-344). The same mutations in TK2 were introduced, and the mutant enzymes, prepared in recombinant form, were shown to have similar subunit structure to wild type TK2. The I212N mutant showed less than 1% activity as compared with wild type TK2 with all deoxynucleosides. The H121N mutant enzyme had normal K(m) values for thymidine (dThd) and deoxycytidine (dCyd), 6 and 11 microm, respectively, but 2- and 3-fold lower V(max) values as compared with wild type TK2 and markedly increased K(m) values for ATP, leading to decreased enzyme efficiency. Competition experiments revealed that dCyd and dThd interacted differently with the H121N mutant as compared with the wild type enzyme. The consequences of the two point mutations of TK2 and the role of TK2 in mt disorders are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号