首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different plant species produce a variety of terpenoid indole alkaloids, which are of interest as plant defensive secondary metabolites and as valuable pharmaceuticals. Although significant progress has been made, the mechanisms regulating the levels of this important class of compounds require continued elucidation. Previous precursor feeding studies have indicated that alkaloid accumulation can be improved during the exponential growth phase of hairy root cultures through enhanced tryptophan availability. To test this relationship, transgenic hairy root cultures of Catharanthus roseus were established with a glucocorticoid-inducible promoter controlling the expression of an Arabidopsis feedback-resistant anthranilate synthase alpha subunit. Enzyme assays demonstrated that the Arabidopsis alpha subunit is compatible with the native beta subunit and that anthranilate synthase activity is more resistant to tryptophan inhibition in induced than in uninduced extracts. The metabolic effects of expressing the feedback-resistant anthranilate synthase alpha subunit were also dramatic. Over a 6-day induction period during the late exponential growth phase, tryptophan and tryptamine specific yields increased from almost undetectable levels to 2.5 mg/g dry weight and from 25 microg/g to 267 microg/g dry weight, respectively. The greater than 300-fold increase in tryptophan levels observed in these studies under certain induction conditions compares favorably with the fold increases obtained in previous constitutive expression studies. Despite the large increases in tryptophan and tryptamine, the levels of most terpenoid indole alkaloids were not significantly altered, with the exception of lochnericine, which increased 81% after a 3-day induction period. These results suggest that terpenoid indole alkaloid levels are tightly controlled.  相似文献   

2.
Catharanthus roseus produces two economically valuable anticancer drugs, vinblastine and vincristine. These drugs are members of the terpenoid indole alkaloids and accumulate in small quantities within the plant; thus these two drugs are expensive to produce. Metabolic engineering efforts have focused on increasing the alkaloids in this pathway through various means such as elicitation, precursor feeding, and gene overexpression. Recently we successfully expressed Arabidopsis genes encoding a feedback-insensitive anthranilate synthase alpha subunit under the control of the glucocorticoid-inducible promoter system and the anthranilate synthase beta subunit under the control of a constitutive promoter in C. roseus hairy roots. In this work we look at the transient behaviors of terpenoid indole alkaloids over a 72 h induction period in late exponential growth phase cultures. Upon induction, the tryptophan, tryptamine, and ajmalicine pools accumulated over 72 h. In contrast, the lochnericine, h?rhammericine, and tabersonine pools decreased and leveled out over the 72 h induction period. Visible changes within the individual compounds usually took from 4 to 12 h.  相似文献   

3.
In plants, the indole pathway provides precursors for a variety of secondary metabolites. In Catharanthus roseus, a decarboxylated derivative of tryptophan, tryptamine, is a building block for the biosynthesis of terpenoid indole alkaloids. Previously, we manipulated the indole pathway by introducing an Arabidopsis feedback-insensitive anthranilate synthase (AS) alpha subunit (trp5) cDNA and C. roseus tryptophan decarboxylase gene (TDC) under the control of a glucocorticoid-inducible promoter into C. roseus hairy roots [Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004a. Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol. Bioeng. 86, 718-727; Hughes, E.H., Hong, S.-B., Gibson, S.I., Shanks, J.V., San, K.-Y. 2004b. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabol. Eng. 6, 268-276]. Inducible expression of either or both transgenes did not lead to significant increases in overall alkaloid levels despite the considerable accumulation of tryptophan and tryptamine. In an attempt to more successfully engineer the indole pathway, a wild type Arabidopsis ASbeta subunit (ASB1) cDNA was constitutively expressed along with the inducible expression of trp5 and TDC in C. roseus hairy roots. Transgenic hairy roots expressing both trp5 and ASB1 show a significantly greater resistance to feedback inhibition of AS activity by tryptophan than plants expressing only trp5. In fact, a 4.5-fold higher concentration of tryptophan is required to achieve 50% inhibition of AS activity in plants overexpressing both genes than in plants expressing only trp5. In addition, upon a 3 day induction during the exponential phase, a trp5:ASB1 hairy root line produced 1.8 times more tryptophan (specific yield ca. 3.0 mg g(-1) dry weight) than the trp5 hairy root line. Concurrently, tryptamine levels increase up to 9-fold in the induced trp5:ASB1 line (specific yield ca. 1.9 mg g(-1) dry weight) as compared with only a 4-fold tryptamine increase in the induced trp5 line (specific yield ca. 0.3 mg g(-1) dry weight). However, endogenous TDC activities of both trp5:ASB1 and trp5 lines remain unchanged irrespective of induction. When TDC is ectopically expressed together with trp5 and ASB1, the induced trp5:ASB1:TDC hairy root line accumulates tryptamine up to 14-fold higher than the uninduced line. In parallel with the remarkable accumulation of tryptamine upon induction, alkaloid accumulation levels were significantly changed depending on the duration and dosage of induction.  相似文献   

4.
Precursors from the terpenoid and tryptophan branches were fed to Catharanthus roseus to determine which of the two branches limits metabolic flux to indole alkaloids. The feeding of tryptophan at 17 days of the culture cycle produced auxin-like effects. Addition of low levels of auxin or tryptophan resulted in significant increases in flux to the indole alkaloids. Conversely, feeding higher levels of auxin or tryptophan resulted in increased branching and thickening of the hairy root cultures. A dramatic reduction in flux to the alkaloids was also observed. However, feeding tryptamine or terpenoid precursors had no effect. Therefore, neither pathway tested revealed to be rate-limiting during the late growth phase. Feeding of either geraniol, 10-hydroxygeraniol, or loganin at 21 days each resulted in significant increases in the accumulation of tabersonine. The addition of tryptophan or tryptamine had no effect during the stationary phase of the growth cycle. Thus, during the early stationary phase of growth the terpenoid pathway appears to be rate-limiting. Combined elicitation with jasmonic acid and feeding either loganin or tryptamine did not further enhance the accumulation of indole alkaloids.  相似文献   

5.
6.
The terpenoid indole alkaloid (TIA) pathway in Catharanthus roseus produces two important anticancer drugs, vinblastine and vincristine, in very low yields. This study focuses on overexpressing several key genes in the upper part of the TIA pathway in order to increase flux toward downstream metabolites within hairy root cultures. Specifically, we constructed hairy root lines with inducible overexpression of 1-deoxy-D-xylulose synthase (DXS) or geraniol-10-hydroxylase (G10H). We also constructed hairy root lines with inducible expression of DXS and anthranilate synthase α subunit (ASA) or DXS and G10H. DXS overexpression resulted in a significant increase in ajmalicine by 67%, serpentine by 26% and lochnericine by 49% and a significant decrease in tabersonine by 66% and h?rhammericine by 54%. Co-overexpression of DXS and G10H caused a significant increase in ajmalicine by 16%, lochnericine by 31% and tabersonine by 13%. Likewise, DXS and ASA overexpression displayed a significant increase in h?rhammericine by 30%, lochnericine by 27% and tabersonine by 34%. These results point to the need for overexpressing multiple genes within the pathway to increase the flux toward vinblastine and vincristine.  相似文献   

7.
The 1-deoxy-D-xylulose-5-phosphate (DXP) pathway (non-mevalonate pathway) leading to terpenoids via isopentenyl diphosphate (IPP) has been shown to occur in most bacteria and in all higher plants. Treatment with the antibiotic fosmidomycin, a specific inhibitor of DXP reductoisomerase, considerably inhibited the accumulation of the alkaloids ajmalicine, tabersonine, and lochnericine by Catharanthus roseus hairy root cultures in the exponential growth phase. However, fosmidomycin did not significantly affect alkaloid levels in stationary phase hairy root cultures. Feeding with 1-deoxy-D-xylulose, 10-hydroxygeraniol, or loganin resulted in significant increases in alkaloid production by exponential phase hairy root cultures. These results suggest that the DXP pathway is a major provider of carbon for the monoterpenoid pathway leading to the formation of indole alkaloids in C. roseus hairy roots in the exponential phase.  相似文献   

8.
A screening method was developed for the detection of enzymes converting loganin to secologanin, a precursor in the biosynthesis of indole alkaloids. The method uses a transgenic yeast culture expressing two cDNAs encoding enzymes involved in the terpenoid indole alkaloid biosynthesis. In the presence of secologanin, the yeast culture produces a yellow compound visible on nitrocellulose. This color change was used to screen a cDNA library of Catharanthus roseus for a putative enzyme converting loganin into secologanin.  相似文献   

9.
To obtain more insight into the regulation of terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus (L.) G. Don cell cultures and particularly to identify possible rate limiting steps, a transgenic cell line over-expressing tryptophan decarboxylase (Tdc), and thus having a high level of tryptamine, was fed with various amounts of precursors (tryptophan, tryptamine, loganin and secologanin) in different time schedules and analyzed for TIA production. When these precursors were added to this culture it was found that the optimal time for supplying the precursors was at inoculation of the cells into the production medium. Alkaloid accumulation by line T22 was enhanced by addition of loganin or secologanin; however, the secologanin feeding was less effective. Tryptamine or tryptophan alone had no effect on TIA accumulation. The over-expression of Tdc causes this cell line to produce quite large quantities of alkaloids after feeding loganin or secologanin. However, in combination with tryptophan or tryptamine, feeding of these precursors resulted in an even further increase of alkaloid accumulation and under optimal conditions line T22 accumulated around 1200 micromol l(-1) of TIAs whereas the control cultures accumulated less than 10 micromol l(-1) TIAs.  相似文献   

10.
11.
采用反相高效液相色谱法(RP-HPLC)对23个长春花品种中的重要萜类吲哚生物碱文多灵、长春质碱和长春碱含量进行了测定,发现这3种生物碱的含量在不同品种中存在较大差异。相关性分析表明,文多灵、长春质碱和长春碱这3种生物碱中,文多灵含量和长春碱含量有极显著的相关性(P0.01)。利用RT-PCR分析了香叶醇10-脱羧酶基因(g10h)和异胡豆苷合成酶基因(str)在萜类吲哚生物碱含量有显著差异的品种之间的表达水平差异,并结合生物碱含量数据结果,发现g10h和str的表达水平和文多灵和长春质碱的总含量有显著的正相关性(P0.05),说明g10h和str基因可以作为长春花中文多灵和长春质碱含量的参考基因标记。该研究对为选育高萜类吲哚生物碱含量长春花品种及长春花萜类吲哚生物碱代谢工程具有重要意义。  相似文献   

12.
13.
This work presents a study of the effect of different phytohormones on growth and accumulation of terpenoid indole alkaloids in a Catharanthus roseus cell suspension culture upon feeding with the precursors loganin and tryptamine. The phytohormones tested were 2,4-dichlorophenoxyacetic acid, salicylic acid, methyl jasmonate and abscisic acid. Among these only methyl jasmonate enhanced the accumulation of alkaloids. Abscisic acid did not enhance the accumulation of alkaloids but delayed the catabolism of strictosidine.  相似文献   

14.
Biotechnology for the production of plant secondary metabolites   总被引:10,自引:2,他引:8  
Verpoorte  R.  Contin  A.  Memelink  J. 《Phytochemistry Reviews》2002,1(1):13-25
The production of plant secondary metabolites by means of large-scale culture of plant cells in bioreactors is technically feasible. The economy of such a production is the major bottleneck. For some costly products it is feasible, but unfortunately some of the most interesting products are only in very small amounts or not all produced in plant cell cultures. Screening, selection and medium optimization may lead to 20- to 30-fold increase in case one has producing cultures. In case of phytoalexins, elicitation will lead to high production. But for many of the compounds of interest the production is not inducible by elicitors. The culture of differentiated cells, such as (hairy) root or shoot cultures, is an alternative, but is hampered by problems in scaling up of such cultures. Metabolic engineering offers new perspectives for improving the production of compounds of interest. This approach can be used to improve production in the cell culture, in the plant itself or even production in other plant species or organisms. Studies on the production of terpenoid indole alkaloids have shown that the overexpression of single genes of the pathway may lead for some enzymes to an increased production of the direct product, but not necessarily to an increased alkaloid production. On the other hand feeding of such transgenic cultures with early precursors showed an enormous capacity for producing alkaloids, which is not utilized without feeding precursors. Overexpression of regulatory genes results in the upregulation of a series of enzymes in the alkaloid pathway, but not to an improved flux through the pathway, but feeding loganin does result in increased alkaloid production if compared with wild-type cells. Indole alkaloids could be produced in hairy root cultures of Weigelia by overexpression of tryptophan decarboxylase and strictosidine synthase. Alkaloids could be produced in transgenic yeast overexpressing strictosidine synthase and strictosidine glucosidase growing on medium made out the juice of Symphoricarpus albus berries to which tryptamine is added. Metabolic engineering thus seems a promising approach to improve the production of a cell factory.  相似文献   

15.
Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.  相似文献   

16.
The induction of several secondary metabolites in plants is one of the most commonly observed effects after the external addition of methyl jasmonate (MeJA). After the elicitation of Catharanthus roseus hairy roots with different concentrations of MeJA, changes in the accumulation of alkaloids such as ajmalicine, serpentine, ajmaline and catharanthine were observed. In addition to the increased accumulation of alkaloids in the tissues, the root exudation of phytochemicals increased compared to that of the non-treated control hairy roots. Moreover, MeJA induced differential secretion of several C. roseus hairy root metabolites.  相似文献   

17.
Hairy root cultures of Catharanthus roseus were established by infection of seedlings with Agrobacterium rhizogenes 15834. Approximately 150 transformants from four different. C. roseus cultivars were screened for desirable traits in growth and indole alkaloid production. Five hairy root clones grew well in liquid culture with doubling times similar to those reported for cell suspensions. Fast growing clones had similar morphologies, characterized by thin, straight, and regular branches with thin tips. The levels of key alkaloids, ajmalicine, serpentine, and catharanthine, in these five clones, also compared well with literature data from cell suspensions, yet HPLC and GC-MS data indicate the presence of vindoline in two clones at levels over three orders of magnitude greater than the minute amounts reported in cell culture. These results suggest that further optimization may result in hairy roots as a potential source of vindoline and catharanthine, the two monomers necessary to synthesize that antineoplastic drug, vinblastine. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
Efforts to engineer Catharanthus roseus hairy roots to produce commercially significant amounts of valuable compounds, such as the terpenoid indole alkaloids vinblastine and vincristine, require the development of tools to study the effects of overexpressing key metabolic and regulatory genes. The use of inducible promoters allows researchers to control the timing and level of expression of genes of interest. In addition, use of inducible promoters allows researchers to use a single transgenic line as both the control and experimental line, minimizing the problems associated with clonal variation. We have previously characterized the use of a glucocorticoid-inducible promoter system to study the effects of gene overexpression within the terpenoid indole alkaloid pathway on metabolite production. Here the feasibility of using an ethanol-inducible promoter within C. roseus hairy roots is reported. This ethanol-inducible promoter is highly sensitive to ethanol concentration with a concentration of 0.005% ethanol causing a 6-fold increase in CAT reporter activity after 24 h of induction. The ethanol-inducible CAT activity increased 24-fold over a 72-h induction period with 0.5% ethanol.  相似文献   

19.
Catharanthus roseus has been well-known to contain indole alkaloids effective for treatment of diverse cancers. We examined the intracellular accumulation profiles of phenolic compounds in response to ectopic overexpression of tryptophan feedback-resistant anthranilate synthase holoenzyme (ASalphabeta) in C. roseus hairy roots. Among 13 phenolic compounds measured, 6 phenolic compounds were detected in late exponential phase ASalphabeta hairy roots. Uninduced and induced ASalphabeta hairy roots accumulated up to 1.2 and 4.5 mg/g DW over a 72-h period, respectively. Upon induction, in parallel with a rapid increase in tryptophan in the first 48 h, accumulation of phenolic compounds tended to increase to a maximum level (4.5 mg/g DW) at 48 h, after which phenolic levels decreased back to the uninduced level by 72 h. Naringin was a predominant form that comprised about 72% and 36% of the total content of phenolic compounds in the uninduced and induced lines, respectively. Upon induction, accumulation of catechin drastically increased with the highest level (3.6 mg/g) occurring at 48 h, whereas that of all others except for salicylic acid showed no statistical difference. Catechin is a final product of the flavonoid pathway, and thus metabolic flux into this pathway is transiently increased by overexpression of AS. Like catechin, salicylic acid is very sensitive to induction as it began to increase to 5-fold within 4 h of induction, but unlike catechin, no significant accumulation of salicylic acid was noted after 4 h of induction. The results suggest differential regulation of this particular biosynthesis branch within the phenolic pathway.  相似文献   

20.
Compact callus cluster (CCC) cultures established from Catharanthus roseus consist of cohesive callus aggregates displaying certain levels of cellular or tissue differentiation. CCC cultures synthesize about two-fold more indole alkaloids than normal dispersed-cell cultures. Our studies here show that additions of KCl, mannitol, and a variety of synthetic precursors and bioregulators to the CCC cultures markedly improved indole alkaloid production and release of these alkaloids into the medium. Treatment with 250 mM mannitol and 4 g/l KCl yielded 42.3 mg l(-1) and 33.6 mg l(-1)of ajmalicine, respectively; these amounts were about four-fold higher than the control. Succinic acid, tryptamine, and tryptophan feedings also significantly increased ajmalicine (41.5 mg l(-1), 36.9 mg l(-1), and 31.8 mg l(-1), respectively) and catharanthine (21.1 mg l(-1), 17.2 mg l(-1), and 18 mg l(-1), respectively) production by the CCC cultures, while geraniol feeding inhibited biomass and alkaloid accumulation. We also found that tetramethyl ammonium bromide could significantly improve ajmalicine production (49.3 mg l(-1)) and catharanthine production (18.3 mg l(-1)) in C. roseus CCC cultures. The mechanisms responsible for these treatment effects are discussed herein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号