共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We performed a comparative study of bone mechanical properties in the radii of chimpanzees (Pan troglodytes), humans (Homo sapiens), and Japanese macaques (Macaca fuscata) using peripheral quantitative computed tomography. We investigated: (1)cortical bone area relative to the total periosteal
area (PrA); (2) trabecular bone area relative to PrA; (3) cortical bone density; and (4) trabecular bone density. The cortical
bone area index for chimpanzees was almost the same as that of Japanese macaques, whereas the equivalent value in humans was
about the two-fifths that of the others. Values for the other three properties were constant among these three catarrhine
species. Chimpanzees do not particularly resemble humans, but are more similar to digitigrade macaques in terms of bone properties.
The constant trabecular bone area index and trabecular density value in these species may suggest that a certain amount of
trabecular bone (20–30% of total bone area at the distal 4% level of the forearm) is necessary to achieve normal bone turnover.
The physiological metabolism of bone, including cortical bone density, might be conserved in these catarrhines.
Electronic Publication 相似文献
3.
Recent studies have demonstrated the potential application of computed tomography (CT) in research into bone density. Clinical studies of bone density using CT commonly employ a dipotassium phosphate phantom to calibrate measurements of mineral density. Designed for in vivo studies, the use of this phantom requires that bones be scanned while immersed in and permeated by fluids or soft tissues similar to water in X-ray attenuation coefficient. However, this condition may not always be met in anthropological applications, which often involve rare and fragile specimens. This study compares mineral density values calculated for a sample of bones scanned—at the same sites—in air and in water. The results indicate that, when scanned in air, the mineral density of trabecular bone is dramatically underestimated, while that of cortical bone is slightly overestimated. We present a linear regression equation to correct this error but recommend that, when possible, researchers calculate their own regressions based on their specific scanning conditions. Am J Phys Anthropol 103:557–560, 1997. © 1997 Wiley-Liss, Inc. 相似文献
4.
David J. Daegling 《International journal of primatology》1992,13(5):545-570
The influence of hard-object feeding on the size and shape of the mandibular corpus was investigated through a comparative biomechanical analysis of the jaws of adult femaleCebus apella andCebus capucinus. Computed tomography (CT) was used to discern the amount and distribution of cortical bone at M2 and symphyseal cross sections. From these data, the biomechanical properties of the mandibular corpus were determined to assess the structural rigidity of the jaw with respect to the bending, torsional, and shear stresses that occur during mastication and incision. The mandibles ofC. apella are demonstrably more robust than those ofC. capucinus in terms of biomechanical rigidity; differences in corporeal size rather than shape largely account for the enhanced robusticity in the sample ofC. apella. The differences that separate the two taxa probably represent a structural response to the mechanical demands of durophagy inC. apella. These observations suggest that specialization on a diet of hard objects may be expected to result in an overall hypertrophy of bony contours throughout the mandibular corpus. 相似文献
5.
The collection of data on physical parameters of body segments is a preliminary critical step in studying the biomechanics of locomotion. Little data on nonhuman body segment parameters has been published. The lack of standardization of techniques for data collection and presentation has made the comparative use of these data difficult and at times impossible. This study offers an approach for collecting data on center of gravity and moments of inertia for standardized body segments. The double swing pendulum approach is proposed as a solution for difficulties previously encountered in calculating moments of inertia for body segments. A format for prompting a computer to perform these calculations is offered, and the resulting segment mass data for Lemur fulvus is presented. 相似文献
6.
John F. Bateman Lisa Sampurno Antonio Maurizi Shireen R. Lamand Natalie A. Sims Tegan L. Cheng Aaron Schindeler David G. Little 《Journal of cellular and molecular medicine》2019,23(3):1735-1745
Osteogenesis imperfecta (OI) is commonly caused by heterozygous type I collagen structural mutations that disturb triple helix folding and integrity. This mutant‐containing misfolded collagen accumulates in the endoplasmic reticulum (ER) and induces a form of ER stress associated with negative effects on osteoblast differentiation and maturation. Therapeutic induction of autophagy to degrade the mutant collagens could therefore be useful in ameliorating the ER stress and deleterious downstream consequences. To test this, we treated a mouse model of mild to moderate OI (α2(I) G610C) with dietary rapamycin from 3 to 8 weeks of age and effects on bone mass and mechanical properties were determined. OI bone mass and mechanics were, as previously reported, compromised compared to WT. While rapamycin treatment improved the trabecular parameters of WT and OI bones, the biomechanical deficits of OI bones were not rescued. Importantly, we show that rapamycin treatment suppressed the longitudinal and transverse growth of OI, but not WT, long bones. Our work demonstrates that dietary rapamycin offers no clinical benefit in this OI model and furthermore, the impact of rapamycin on OI bone growth could exacerbate the clinical consequences during periods of active bone growth in patients with OI caused by collagen misfolding mutations. 相似文献
7.
Cross-sectional geometric properties of the postcanine mandibular corpus are determined for the only known specimen of Otavipithecus namibiensis, a middle Miocene hominoid from southern Africa. It is shown that Otavipithecus is unique in that several important mechanical properties of its mandible, including maximum and minimum moments of inertia and distribution of cortical bone, differ from patterns seen in both extant hominoids and the early hominids Australopithecus africanus and Australopithecus (Paranthropus) robustus. This is particularly apparent in the mechanical design of the posterior portion of the mandibular corpus for resisting increased torsional and transverse bending moments. Cortical index values at the level of M2 also reveal that both Otavipithecus and A. africanus are similarly designed to resist increased masticatory loads with relatively less cortical bone area, a highly efficient mechanical design. © 1996 Wiley-Liss, Inc. 相似文献
8.
Organ JM Ruff CB Teaford MF Nisbett RA 《American journal of physical anthropology》2006,130(4):501-507
Previous animal experimental work evaluating the effects of dietary consistency on mastication was generally limited to studies of either mandibular structure or rates and types of tooth wear. Control groups fed hard diets (HD) consistently exhibited increased cortical remodeling and/or bone strength when compared to groups fed soft diets (SD). Results of tooth-wear studies showed faster rates of tooth wear in HD animals. This study evaluates the effects of dietary differences on both mandibular structural morphology and postcanine dental microwear in the same animals. We examined mandibles and dentitions from eight miniature swine, raised from 4 weeks to 9 months of age on HD and SD (n = 4, each group). Mandibular structural properties were calculated from peripheral quantitative computed tomography slices at the dp3-dp4 and dp4-M1 junctions. Dental microwear analysis was performed on mandibular lingual crushing facets of dp4 and M1, using photomicrographs of high-resolution casts taken at 500x magnification in a scanning electron microscope. Our results suggest that between the dp3-dp4 contact, HD animals have mandibles that are stronger and more rigid mediolaterally than SD animals. At the dp4-M1 contact, HD animals have mandibles that are stronger and more rigid mediolaterally, dorsoventrally, and in torsion than SD animals. Dental microwear results indicate that SD pigs have higher incidences of pitting and more overall microwear features on their premolars than do HD pigs, yet there are no significant differences in molar microwear morphology between the dietary groups. Near-significant correlations exist between pit size and dorsoventral bending strength, but only for HD pigs. These results suggest that dietary consistency significantly affects both mandibular structure and dental microwear, yet direct correlations between the two are complicated by a number of factors. 相似文献
9.
Shin Kai Takashi Sato Yoshio Koga Go Omori Koichi Kobayashi Makoto Sakamoto Yuji Tanabe 《Journal of biomechanics》2014
Automated methods for constructing patient-specific anatomical coordinate systems (ACSs) for the pelvis, femur and tibia were developed based on the bony geometry of each, derived from computed tomography (CT). The methods used principal axes of inertia, principal component analysis (PCA), cross-sectional area, and spherical and ellipsoidal surface fitting to eliminate the influence of rater's bias on reference landmark selection. Automatic ACSs for the pelvis, femur, and tibia were successfully constructed on each 3D bone model using the developed algorithm. All constructions were performed within 30 s; furthermore, between- and within- rater errors were zero for a given CT-based 3D bone model, owing to the automated nature of the algorithm. ACSs recommended by the International Society of Biomechanics (ISB) were compared with the automatically constructed ACS, to evaluate the potential differences caused by the selection of the coordinate system. The pelvis ACSs constructed using the ISB-recommended system were tilted significantly more anteriorly than those constructed automatically (range, 9.6–18.8°). There were no significant differences between the two methods for the femur. For the tibia, significant differences were found in the direction of the anteroposterior axis; the anteroposterior axes identified by ISB were more external than those in the automatic ACS (range, 17.5–25.0°). 相似文献
10.
Sophie Aschenberg Stephanie Finzel Sarah Schmidt Sebastian Kraus Klaus Engelke Matthias Englbrecht Jürgen Rech Georg Schett 《Arthritis research & therapy》2013,15(3):R62
Introduction
The aim of this study was to determine the factors, including markers of bone resorption and bone formation, which determine catabolic and anabolic periarticular bone changes in patients with rheumatoid arthritis (RA).Methods
Forty RA patients received high-resolution peripheral quantitative computed tomography (HR-pQCT) analysis of the metacarpophalangeal joints II and III of the dominantly affected hand at two sequential time points (baseline, one year follow-up). Erosion counts and scores as well as osteophyte counts and scores were recorded. Simultaneously, serum markers of bone resorption (C-terminal telopeptide of type I collagen (CTX I), tartrate-resistant acid phosphatase 5b (TRAP5b)), bone formation (bone alkaline phosphatase (BAP), osteocalcin (OC)) and calcium homeostasis (parathyroid hormone (PTH), 25-hydroxyvitamin D3 (Vit D)) were assessed. Bone biomarkers were correlated to imaging data by partial correlation adjusting for various demographic and disease-specific parameters. Additionally, imaging data were analyzed by mixed linear model regression.Results
Partial correlation analysis showed that TRAP5b levels correlate significantly with bone erosions, whereas BAP levels correlate with osteophytes at both time points. In the mixed linear model with erosions as the dependent variable, disease duration (P <0.001) was the key determinant for these catabolic bone changes. In contrast, BAP (P = 0.001) as well as age (P = 0.018), but not disease duration (P = 0.762), were the main determinants for the anabolic changes (osteophytes) of the periarticular bone in patients with RA.Conclusions
This study shows that structural bone changes assessed with HR-pQCT are accompanied by alterations in systemic markers of bone resorption and bone formation. Besides, it can be shown that bone erosions in RA patients depend on disease duration, whereas osteophytes are associated with age as well as serum level of BAP. Therefore, these data not only suggest that different variables are involved in formation of bone erosions and osteophytes in RA patients, but also that periarticular bone changes correlate with alterations in systemic markers of bone metabolism, pointing out BAP as an important parameter. 相似文献11.
E. Verhulp R. Müller R. Huiskes 《Computer methods in biomechanics and biomedical engineering》2013,16(4):389-395
Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 μm had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone. 相似文献
12.
Chentian Li Rongwei Tan Yuanjun Guo 《Computer methods in biomechanics and biomedical engineering》2018,21(1):83-90
Background: There is lack of further observations on the microstructure and material property of callus during bone defect healing and the relationships between callus properties and the mechanical strength. Methods: Femur bone defect model was created in rabbits and harvested CT data to reconstruct finite element models at 1 and 2 months. Three types of assumed finite element models were compared to study the callus properties, which assumed the material elastic property as heterogeneous (R-model), homogenous (H-model) or did not change from 1 to 2 months (U-model). Results: The apparent elastic moduli increased at 2 months (from 355.58 ± 132.67 to 1139.30 ± 967.43 MPa) in R-models. But there was no significant difference in apparent elastic moduli between R-models (355.58 ± 132.67 and 1139.30 ± 967.43 MPa) and H-models (344.79 ± 138.73 and 1001.52 ± 692.12 MPa) in 1 and 2 months. A significant difference of apparent elastic moduli was found between the R-model (1139.30 ± 967.43 MPa) and U-model group (207.15 ± 64.60 MPa) in 2 months. Conclusions: This study showed that the callus structure stability remodeled overtime to achieve a more effective structure, while the material quality of callus tissue is a very important factor for callus strength. At the meantime, this study showed an evidence that the material heterogeneity maybe not as important as it is in bone fracture model. 相似文献
13.
Although the correspondence between habitual activity and diaphyseal cortical bone morphology has been demonstrated for the fore- and hind-limb long bones of primates, the relationship between trabecular bone architecture and locomotor behavior is less certain. If sub-articular trabecular and diaphyseal cortical bone morphology reflects locomotor patterns, this correspondence would be a valuable tool with which to interpret morphological variation in the skeletal and fossil record. To assess this relationship, high-resolution computed tomography images from both the humeral and femoral head and midshaft of 112 individuals from eight anthropoid genera (Alouatta, Homo, Macaca, Pan, Papio, Pongo, Trachypithecus, and Symphalangus) were analyzed. Within-bone (sub-articular trabeculae vs. mid-diaphysis), between-bone (forelimb vs. hind limb), and among-taxa relative distributions (femoral:humeral) were compared. Three conclusions are evident: (1) Correlations exists between humeral head sub-articular trabecular bone architecture and mid-humerus diaphyseal bone properties; this was not the case in the femur. (2) In contrast to comparisons of inter-limb diaphyseal bone robusticity, among all species femoral head trabecular bone architecture is significantly more substantial (i.e., higher values for mechanically relevant trabecular bone architectural features) than humeral head trabecular bone architecture. (3) Interspecific comparisons of femoral morphology relative to humeral morphology reveal an osteological \"locomotor signal\" indicative of differential use of the forelimb and hind limb within mid-diaphysis cortical bone geometry, but not within sub-articular trabecular bone architecture. 相似文献
14.
目的:改进骨折接骨扳内固定技术.观察新型迭形接骨板临床效果。方法:选择四肢长管骨骨折患者165例(上肢骨折26例,下肢骨折139例),均采用新型迭形接骨板施行骨折内固定手术。结果:手术后平均随访1年4个月(5年7个月~51天),除5例(占3%)出现并发症外,其余骨折均愈合良好,很少发现接骨板和螺钉断裂、折弯和松动情况。结论:与传统接骨板比较,新型迭形接骨板结构设计新颖,力学原理独特,临床效果满意,并发症少,较好地改进了四肢长管骨(尤其是下肢)骨折接骨板内固定技术,值得推荐。 相似文献
15.
L. Ciocca M. Fantini F. De Crescenzio G. Corinaldesi R. Scotti 《Computer methods in biomechanics and biomedical engineering》2013,16(1):26-32
The protocol presented here is intended to minimise the intervention in bone reconstruction surgery when severe atrophy or deformity is present in the maxillary arches. A patient underwent augmentation of an atrophic maxillary arch using titanium mesh and particulate autogenous plus bovine demineralised bone. After computed tomography data elaboration, computer-aided design and computer-aided machining were used to plan the augmentation of bone volume to improve the implant position needed to support the final dental prosthesis. The augmented maxilla was rapidly prototyped in plastic, and the titanium mesh was tested on this model before the surgical intervention. Then, the preformed titanium mesh was implanted in the maxillary arch with bone grafting. The bone was augmented relative to the position of the implants for the definitive fixed implant-supported rehabilitation. The protocol presented here is a viable, reproducible way to determine the correct bone augmentation for the final implant-supported prosthetic rehabilitation. 相似文献
16.
Work on the interspecific and intraspecific variation of trabecular bone in the proximal femur of primates demonstrates important architectural variation between animals with different locomotor behaviors. This variation is thought to be related to the processes of bone adaptation whereby bone structure is optimized to the mechanical environment. Micromechanical finite element models were created for the proximal femur of the leaping Galago senegalensis and the climbing and quadrupedal Loris tardigradus by converting bone voxels from high-resolution X-ray computed tomography scans of the femoral head to eight-noded brick elements. The resulting models had approximately 1.8 million elements each. Loading conditions representing takeoff phase of a leap and more generalized load orientations were applied to the models, and the models were solved using the iterative \"row-by-row\" matrix-vector multiplication algorithm. The principal strain and Von Mises stress results for the leaping model were similar for both species at each load orientation. Similar hip joint reaction forces in the range of 4.9 x to 12 x body weight were calculated for both species under each loading condition, but the hip reaction values estimated for Loris were higher than predicted based on locomotor behavior. These results suggest that functional adaptation to hip joint loading may not fully explain the differences in femoral head trabecular bone structure in Galago and Loris. The finite element method represents a unique and useful tool for analyzing the functional adaptation of trabecular bone in a diversity of animals and for reconstructing locomotor behavior in extinct taxa. 相似文献
17.
The intrinsic permeability of bone plays an important role in the transport of nutrients and minerals within the tissue, and affects the mechanical stimuli that are related to the fate of the stem cells. The objective of this study was to establish a method to assess trabecular bone permeability using experimental and finite element (FE) modeling approaches based on micro computed tomography (µCT) images. Human cadaveric tibia cube specimens (N=23) were scanned with µCT. The permeability was measured experimentally using a custom-developed constant-head permeameter, and computationally by a poroelastic formulation to simulate the fluid flow within the discretized bone matrix and pore phase. The average of the experimentally measured permeability was 4.84×10−10 m2 with a standard deviation of 3.70×10−10 m2. A regression model of the µCT determined that the maximum bone area to total area ratio (maxBA/TA) for all slices that are perpendicular to the direction of fluid flow explained 84% of the variability of the natural logarithm of the experimentally measured permeability. The 2D measure of maxBA/TA performed better than 3D measures in general, although some parameters were reasonably well associated with permeability such as bone volume ratio (BV/TV, r=−0.71), the bone surface/bone volume (BS/BV, r=0.73), and the trabecular thickness (TbTh, r=−0.71). The correlation between the permeability predicted with FE models and experimentally measured permeability was reasonable (r=0.69), but the FE approach did not accurately represent the wide variability of permeability measured experimentally. The results of this study suggest that the changes in the trabecular bone microarchitecture have an exponential relationship with permeability, and the use of µCT-based 2D measurement of maxBA/TA performs well at predicting permeability, thus providing a convenient approach to measure this important aspect affecting biomechanical functions in the tissue. 相似文献
18.
Whole-body fields were tested for their efficacy in preventing the osteopenia caused by tail suspension in mice. The fields had fundamental frequencies corresponding to the upper range of predicted endogenous impact-generated frequencies (0.25–2.0 kHz) in the long bones. Three distinct whole-body EMFs were applied for 2 weeks on growing mice. Structural, geometric, and material properties of the femora, tibiae, and humeri of suspended mice were altered compared to controls. Comparison of suspended mice and mice subjected to caloric restriction indicates that the changes in caloric intake do not explain either the suspension or the field-induced effects. In agreement with past studies, rather, unloading appears to cause the suspension effects and to be addressed by the EMFs. The EMF effects on bone properties were apparently frequency dependent, with the lower two fundamental frequencies (260 and 910 Hz) altering, albeit slightly, the suspension-induced bone effects. The fields are not apparently optimized for frequency, etc., with respect to therapeutic potential; however, suspension provides a model system for further study of the in vivo effects of EMFs. © 1995 Wiley-Liss, Inc. 相似文献
19.
The assessment of trabecular bone parameters and cortical bone strength: A comparison of micro-CT and dental cone-beam CT 总被引:1,自引:0,他引:1
Jui-Ting Hsu Shun-Ping Wang Heng-Li Huang Ying-Ju Chen Jay Wu Ming-Tzu Tsai 《Journal of biomechanics》2013
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans. 相似文献
20.
Feng-Hou Huang Franklin C. Cech Roy B. Clarkson 《Biochemical Systematics and Ecology》1975,3(3):143-147
Investigations of soluble proteins by polyacrylamide gel electrophoresis of root extracts of black locust (Robinia pseudoacacia L.) were carried out with 41 trees from diverse habitats representing dominant-stem forms (R. p. var. rectissima Raber) and typical forms (R. pseudoacacia L.). Soluble protein patterns of dominantstem forms and typical trees did not show differences attributable to tree form. Heritability estimates (broad sense) were determined as 9·19% within location and 7·.5% among populations. A variance components model was constructed which showed the interaction between parental trees and location to be most significant in determining variation. Location variance was second in importance, with parental variance and experimental error of less significance. The data were analyzed by the moment of inertia. It is indicated that, based on protein similarity, the dominant-stem form is an ecological variant and should not be given varietal status. 相似文献