首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas temperature in an electrode microwave discharge in hydrogen at pressures of 1–8 torr and input powers of 20–90 W is determined from the relative intensities of the rotational lines of the electronically excited molecules of the Fulcher α system of molecular hydrogen. It is found that the gas temperature in the discharge is no higher than 800 K over the entire range of the experimental conditions under study. For this reason, plasma resonance cannot be regarded as a factor determining the physical processes in the discharge over the entire pressure range. Since the discharge unit is a nonuniform gas-dynamic system (the gas is fed through a small hole into a chamber of limited size), there is a possibility of generating vortex flows that intensively mix the gas. This results in a uniform distribution of the gas temperature throughout the entire volume of the spherical plasma structure produced in the experiment.  相似文献   

2.
The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.  相似文献   

3.
A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10–4 to 4 × 10–3 Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.  相似文献   

4.
The dependences of the radiation parameters of a plasma relativistic microwave amplifier on the external factors have been studied both experimentally and numerically. The calculated dependences are found to agree qualitatively with the measured ones. In contrast to experimental studies, numerical simulations make it possible to examine physical processes occurring inside the plasma waveguide. Good agreement between the measured and calculated dependences of the radiation parameters on the external factors shows that information provided by numerical simulations of the processes occurring inside the plasma waveguide can be considered quite reliable. The electromagnetic field structure and electron beam dynamics inside the plasma waveguide have been investigated.  相似文献   

5.
The parameters of the plasma of a microwave electrode discharge in hydrogen at pressures of 1–8 torr and incident powers of 20–80 W are measured by the so-called “relative intensity” method. The method allows one to determine the electron density and electric field in plasma by measuring the relative intensities of the Hα, Hβ, and 763.5-nm Ar line emission and calculating the electron-impact rate constants from the homogeneous Boltzmann equation. The measurements show that there are regions in the discharge where the electron density is higher (a bright electrode sheath) and lower (a spherical region) than the critical density for the frequency 2.45 GHz (ncr~7×1010 cm?3). Inside the spherical region, the electric field varies slightly over the radius and the electron density increases as the discharge boundary is approached. The observed discharge structure can be attributed to the presence of a self-sustained discharge zone (electrode sheath); a non-self-sustained discharge zone (spherical region); and a decaying plasma region, which is separated from the active discharge zone by an electric double layer.  相似文献   

6.
The spectroscopic technique used to measure the parameters of the plasma jets generated in the plasma focus discharge and those of the plasma of the immobile gas through which these jets propagate is described. The time evolution of the intensities and shapes of spectral lines in experiments carried out with helium at the PF-3 facility was studied by means of electron-optical streak cameras. The plasma electron temperature, T ≈ 4–5 eV, was determined from the intensity ratio of two spectral lines, one of which (λ1 = 5876 Å) belongs to neutral helium, while the other (λ2 = 4686 Å), to hydrogen-like helium ions. The plasma density at different time instants was determined from the Stark broadening of these lines in the electric fields of different nature. The plasma density is found to vary from 4 × 1014 to 2 × 1017 cm?3.  相似文献   

7.
A study is made of the relation between the kinetic processes involving carbon-containing species and the intensity ratios of different emission lines in synthesizing diamond films in a microwave discharge plasma. The intensity ratios of the emission lines are measured as functions of the pressure, composition, and flow rate of the gas mixture. The kinetic processes involving carbon-containing components are simulated under conditions close to the experimental ones. It is shown that the intensity ratios of different pairs of lines can be used to control diamond film deposition.  相似文献   

8.
The resonant excitation of plasma (Langmuir) oscillations during the microwave breakdown of a low-pressure gas is studied both analytically and numerically using the simplest uniform model. It is shown that, because of a significant delay in electron heating and cooling, this effect ensures that the plasma density increases at a high (resonant) rate, even after exceeding a critical value, and can reach a very high (overcritical) level.  相似文献   

9.
Plasma Physics Reports - Results are presented from numerical simulations of the time evolution of open discharges in helium that are excited in the presence of an anode grid and generate electron...  相似文献   

10.
The presence of atherosclerotic plaques has been shown to be closely related to the vessel geometry. Studies on postmortem human arteries and on the experimental animal show positive correlation between the presence of plaque thickness and low shear stress, departure of unidirectional flow and regions of flow separation and recirculation. Numerical simulations of arterial blood flow and direct blood flow velocity measurements by magnetic resonance imaging (MRI) are two approaches for the assessment of arterial blood flow patterns. In order to verify that both approaches give equivalent results magnetic resonance velocity data measured in a compliant anatomical carotid bifurcation model were compared to the results of numerical simulations performed for a corresponding computational vessel model. Cross sectional axial velocity profiles were calculated and measured for the midsinus and endsinus internal carotid artery. At both locations a skewed velocity profile with slow velocities at the outer vessel wall, medium velocities at the side walls and high velocities at the flow divider (inner) wall were observed. Qualitative comparison of the axial velocity patterns revealed no significant differences between simulations and in vitro measurements. Even quantitative differences such as for axial peak flow velocities were less than 10%. Secondary flow patterns revealed some minor differences concerning the form of the vortices but maximum circumferential velocities were in the same range for both methods.  相似文献   

11.
Results are presented from experimental and theoretical studies of the production of singlet delta oxygen in a pulsed electron-beam-sustained discharge ignited in a large (~18-1) volume at a total gas mixture pressure of up to 210 Torr. The measured yield of singlet oxygen reaches 10.5%. It is found that varying the reduced electric field from ~2 to ~11 kV/(cm atm) slightly affects singlet oxygen production. It is shown experimentally that an increase in the gas mixture pressure or the specific input energy reduces the duration of singlet oxygen luminescence. The calculated time evolution of the singlet oxygen concentration is compared with experimental results.  相似文献   

12.
Excitation of a microwave discharge at the end of a cylindrical electrode in nitrogen at a pressure of 1 Torr and incident powers of 60–140 W was investigated experimentally by using K-008 and K-011 video cameras and analyzing oscillograms of discharge emission. The times during which the discharge is established in the radial and axial directions are found to be on the order of 10−4 and 10−2 s, respectively. The results obtained are analyzed using one-dimensional simulations of a discharge in nitrogen in a quasistatic approximation. The kinetic scheme includes 50 processes involving electrons, ions, and excited molecules and atoms. The time evolution of the concentrations of molecular nitrogen in the N2(C 3II u ) and N2(B 3II g ) states, responsible for the recorded discharge emission, is compared with the experimental data.  相似文献   

13.
Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.  相似文献   

14.
The structure of a discharge induced by a coaxial microwave plasmatron with a gas-supply channel in the inner electrode of a coaxial waveguide is investigated. A plasmatron with a power of up to 10 W operates at a frequency of 10 GHz. Depending on the operation regime, the discharge takes either a filament or torch form. A plasma filament arises at low flow rates of the working gas (argon) and occurs at the border of the potential core of the gas jet. A torch discharge occurs at high flow rates and has the form of a hollow cone. In both cases, the discharge arises in the potential core of the gas jet and does not spread beyond it. The distribution of the microwave field in the discharge plasma is determined.  相似文献   

15.
The parameters of the electrode region of an electrode microwave discharge in nitrogen are studied by emission spectroscopy. The radial and axial distributions of the intensities of the bands of the second (N2(C 3Π u B 3Π g )) and first (N2(B 3Π g A 3Σ u + )) positive systems of molecular nitrogen and the first negative system of nitrogen ions (N 2 + (B 2Σ u + X 2Σ g + )), the radial profiles of the electric field E and the electron density N e , and the absolute populations of the vibrational levels v C = 0–4 of the C 3Π u excited state of N2 and the vibrational level v Bi = 0 of the B 2Σ u + excited state of a molecular nitrogen ion are determined. The population temperature of the first vibrational level T V of the ground electronic state X 1Σ g + of N2 and the excitation temperature T C of the C 3Π u state in the electrode region of the discharge are measured. The radius of the spherical region and the spatially integrated plasma emission spectra are studied as functions of the incident microwave power and gas pressure. A method for determining the electron density and the microwave field strength from the plasma emission characteristics is described in detail.  相似文献   

16.
The effect of the dc electric field on the near-surface plasma of an electrode microwave discharge at pressures of 1?C5 Torr was studied by the emission spectroscopy method. It is shown that the dc field weakly affects the vibrational distribution of nitrogen molecules in the C3??u state, but changes the structure of the near-surface plasma (shifting the intensity maxima of the emission bands) and the strength of the microwave field near the electrode surface. It is also found that the ratio between the intensities of bands of different sequences of the second positive system of nitrogen radiated from the same state depends on the position along the discharge axis.  相似文献   

17.
Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.  相似文献   

18.
It is demonstrated experimentally that the lifetime of the afterglow plasma of a high-current pulsed discharge in a dielectric tube filled with a mixture of argon with saturated mercury vapor is longer than 1 ms. Such a long lifetime, during which the electron density decreases from 1014 to 1012 cm−3, is explained by the chemi-ionization of mercury vapor by long-lived metastable argon atoms. During this time, the afterglow plasma can serve as a microwave waveguide for a weakly damped low-noise E 0-type axisymmetric surface mode, which allows one to use it for transmission of signals in the centimeter wavelength range.  相似文献   

19.
Laser interferometry methods were used to measure the density of free electrons and degree of plasma ionization in a hydrogen target intended for experiments on determining energy losses of heavy ion beams in an ionized matter. It is shown that the linear electron density can be varied in the range from 3.3 × 1017 to 1.3 × 1018 cm?2 by varying the initial plasma parameters (the hydrogen pressure in the target and the discharge current). The error in measuring the linear electron density in the entire range of the varied plasma parameters was less than 1%. The maximum degree of plasma ionization achieved at the initial gas pressure of 1 mbar was 0.62 ± 0.05.  相似文献   

20.
An aortic dissection (AD) is a serious condition defined by the splitting of the arterial wall, thus generating a secondary lumen [the false lumen (FL)]. Its management, treatment and follow-up are clinical challenges due to the progressive aortic dilatation and potentially severe complications during follow-up. It is well known that the direction and rate of dilatation of the artery wall depend on haemodynamic parameters such as the local velocity profiles, intra-luminal pressures and resultant wall stresses. These factors act on the FL and true lumen, triggering remodelling and clinical worsening. In this study, we aimed to validate a computational fluid dynamic (CFD) tool for the haemodynamic characterisation of chronic (type B) ADs. We validated the numerical results, for several dissection geometries, with experimental data obtained from a previous in vitro study performed on idealised dissected physical models. We found a good correlation between CFD simulations and experimental measurements as long as the tear size was large enough so that the effect of the wall compliance was negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号