首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The repertoire of CD4+ CD28- T cells in rheumatoid arthritis.   总被引:1,自引:0,他引:1       下载免费PDF全文
BACKGROUND: While oligoclonality of circulating CD4- CD8 and of CD8+ T cells is not uncommon, clonal dominance within the CD4 compartment is not frequently found in healthy individuals. In contrast, the majority of patients with rheumatoid arthritis (RA) have clonally expanded CD4+ T cell populations. Previous studies have demonstrated that these clonogenic CD4+ T cells do not express the CD28 molecule. To examine the correlation between CD28 expression and clonal proliferation, we have analyzed the T cell receptor (TCR) diversity of CD4+ CD28- T cells in normal individuals and in RA patients. MATERIAL AND METHODS: The size of the peripheral blood CD4+ CD28- compartment was determined in 30 healthy individuals and 30 RA patients by two-color FACS analysis. In 10 RA patients and five controls with more than 2.5% CD4+ CD28- T cells, TCR BV gene segment usage was analyzed with 19 BV-specific antibodies. Oligoclonality was assessed in sorted CD4+ CD28+ and CD28- T cells using TCR BV-BC-specific polymerase chain reaction and size fractionation. Clonal dominance was confirmed by direct sequencing. RESULTS: The CD4+ CD28- T cell compartment was expanded to more than 2.5% in 70% of the RA patients and 30% of the normal individuals. Compared with the CD4+ CD28+ T cells, the TCR BV gene segment usage among CD4+ CD28- cells was grossly skewed with the dominance of single BV elements. Molecular TCR analysis provided evidence for oligoclonality in 17 of 21 expanded BV elements. In two unrelated RA patients who shared both HLA-DRB1 alleles, the TCR beta-chain sequences of dominant clonotypes were highly conserved. CONCLUSIONS: Oligoclonality is a characteristic feature of CD4+ CD28- T cells which are expanded in some healthy individuals and in the majority of RA patients. The lack of CD28 expression is a common denominator of CD4+, CD8+, and CD4- CD8- T cells prone to develop clonal dominance. The limited TCR diversity of clonal CD4+ CD28- populations in RA patients suggests that these T cells recognize a limited spectrum of antigens. The fact that the majority of individuals with marked expansions and oligoclonality of CD4+ CD28- T cells are RA patients suggests a role for these unusual lymphocytes in the pathogenetic events leading to RA.  相似文献   

2.
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of mature-appearing clonal B cells exhibiting coexpression of CD5 and CD23. In addition to the accumulation of neoplastic B cells, numerous T-cell abnormalities also occur in B-CLL patients. In this study, the presence, and distribution within the T-cell subsets, of clonal/oligoclonal T cells was studied. Multicolor flow cytometric techniques were employed using combinations of anti-CD3, anti-CD4, and anti-CD8 antibodies coupled with antibodies specific for V(alpha) and V(beta) T-cell receptor (TCR) epitopes. Molecular studies of TCR gene sequences were done to confirm the presence of clonal/oligoclonal T-cell populations. In the flow cytometric studies, examination of V(alpha)/V(beta)expression found evidence of clonal/oligoclonal expansion in 9 of 19 patients studied. In eight of the nine patients, the expansions were restricted to the CD3(+)CD8(+) cell population. Molecular analyses were performed in 16 patients, 12 of whom showed a clonal or oligoclonal pattern. Of the four patients who were negative in the molecular analyses, all demonstrated flow cytometric evidence of clonal/oligoclonal expansions. Thus, when the flow cytometric and molecular analyses were considered together, all 16 patients for whom parallel analyses were done showed evidence of clonal/oligoclonal expansions. These results confirm previous work demonstrating that the majority of B-CLL patients harbor clonal/oligoclonal expansions within the T-cell population. Additionally, based on the relative numbers of cells expressing specific V(alpha) or V(beta)epitopes, these results show that these expansions occur primarily within the CD3(+)CD8(+) T-cell population.  相似文献   

3.
ICOS is expressed on activated T cells and particularly on CXCR5+ follicular Th cells in germinal centers (GC). Its deletion leads to a profound deficiency in memory B cell formation and switched Ab response in humans. Here, we show that in ICOS-deficient patients the generation of GCs is severely disturbed, and the numbers of circulating CXCR5+CD45RO+ memory CD4 T cells are significantly reduced, indicating an essential role of ICOS in the differentiation of CXCR5+CD4 T cells. The GC-specific CD57+CXCR5+ subpopulation is virtually absent. In ICOS-/- mice, the decrease of circulating CXCR5+CD4 T cells reflects the reduction of CXCR5+ follicular Th cells in lymph nodes and spleen. Therefore, in concurrence with the absence of CXCR5+ T cells in the blood of CD40L-deficient patients, these data support the hypothesis that circulating CD57+CXCR5+ T cells are GC derived and thus may serve as a surrogate marker for the presence of functional GCs in humans.  相似文献   

4.
Oligoclonality of CD8+ T cells in breast cancer patients.   总被引:1,自引:0,他引:1       下载免费PDF全文
Substantial evidence has suggested that T cells play an important role in antitumor immunity. T cells with cytotoxic activity against tumors have been isolated from in vitro culture of tumor-infiltrated lymphocytes of cancer patients. In addition, clonal expansions of T cells have been identified in lesions of tumors by using a PCR-based CDR3 analysis of T cell receptors (TCR). Since the CDR3 region of the T cell receptor directly interacts with the antigen-MHC complex and is thus highly polymorphic, a dominant CDR3 length in a particular TCR V beta population will indicate the clonal expansion of a specific T cell clone. Utilizing this technique, we have analyzed the T cell repertoire in lymph nodes (LNs) and peripheral blood of 20 breast cancer patients. Our results show that in most cases, peripheral blood mononuclear cells (PB-MCs) and LN express dominant CD8+ T cell clones in different V beta gene families, and the number of dominant clones is higher in PBMC than in the LN. Furthermore, in 7 out of 16 patients' lymph nodes, there is a dominant V beta 18 T cell clonal expansion in the CD8+ T cell subset. The frequency of an oligoclonal expansion of V beta 18 CD8+ T cells in non-breast cancer lymph nodes is 1 out of 9, but no obvious motif in the CDR3 region of V beta 18 TCR can be identified. The prevalence of the clonal dominance found in breast cancer is discussed in the context of a possible tumor-related antigen stimulation.  相似文献   

5.
目的:分析循环滤泡辅助性T(c Tfh)细胞亚型与重症肌无力(MG)患者临床特点之间的关系。方法:横断面研究30例MG患者外周血c Tfh细胞各个亚型百分比和临床特点之间的关系。c Tfh细胞亚型的百分比是通过流式细胞术获取的。MG患者的临床特点包括性别、年龄、病程、胸腺情况、美国重症肌无力协会(MGFA)分型和重症肌无力量化(QMG)评分。结果:CD4~+CXCR5~+ICOS~+、CD4~+CXCR5~+PD-1~+和CD4~+CXCR5~+CXCR3-CCR6~+(Th17样)c Tfh细胞亚型百分比与QMG评分之间存在正相关关系;全身型重症肌无力(GMG)患者在CD4~+CXCR5~+ICOS~+、CD4~+CXCR5~+PD-1~+和Th17样c Tfh细胞亚型百分比要高于眼肌型重症肌无力(OMG)患者,OMG患者在CD4~+CXCR5~+CXCR3-CCR6-(Th2样)c Tfh亚型细胞百分比要高于GMG患者。c Tfh细胞各个亚型百分比与MG患者的性别、年龄、病程、胸腺情况均无显著相关性。结论:CD4~+CXCR5~+ICOS~+、CD4~+CXCR5~+PD-1~+和Th17样c Tfh细胞亚型百分比与MG病情严重性间存在正相关关系,提示c Tfh细胞与MG之间的密切关系。  相似文献   

6.
BACKGROUND: The principal symptoms of myasthenia gravis (MG), muscle weakness and fatigue due to impaired neuromuscular transmission, are caused by autoantibodies to the muscle nicotinic acetylcholine receptor (AChR). The mechanisms underlying the autoimmune response, however, appear to be initiated by activation of specific HLA class II-restricted CD4+ T lymphocytes. Thus, central to elucidating the causation of MG is determining how T cells are recruited to contribute to misguided immunological assaults on the major autoantigenic target, AChR. MATERIALS AND METHODS: By combining a polymerase chain reaction (PCR)-based strategy and Southern blot technique, we have analyzed the frequency of expression of 22 individual T cell receptor (TCR) V beta gene subfamilies in CD4+ and CD8+ peripheral blood T cell subsets derived from eight MG patients and seven healthy controls. The quantification of relative usage of individual TCR J beta gene segments was performed by hybridization of PCR-amplified products (specifically V beta 1-C beta) with a complete panel of 32P-5''-end-labeled J beta-specific oligonucleotide probes, followed by scanning analysis of autoradiographs. RESULTS: Comparisons of data obtained from V beta analyses of T cells from MG patients with those from healthy individuals established that MG patients significantly overexpressed V beta 1, V beta 13.2, V beta 17, and V beta 20 gene family members within both CD4+ and CD8+ T cell subpopulations. Moreover, analysis of the relative utilization of individual TCR J beta gene segments in V beta 1+/CD4+ and V beta 1+/CD8+ T lymphocytes revealed distribution patterns in patients indistinguishable from those recorded in the corresponding cell subsets derived from controls. CONCLUSIONS: T lymphocytes from MG patients displayed a biased overexpression of four TCR V beta gene segments: V beta 1, V beta 13.2, V beta 17, and V beta 20. The relative frequencies of association of individual V beta 1 (D beta) J beta combinations revealed that J beta gene usage in the V beta 1-over-represented T cell subsets had normal distribution patterns. It can thus be deduced that J beta gene segment products appear not to have a selective effect on the process leading to overexpression of V beta 1 exons in MG patients. Hence, our observations suggest a possible role for superantigen(s) in the T cell activation in MG patients.  相似文献   

7.
CD1d-restricted T cells (NKT cells) are innate memory cells activated by lipid Ags and play important roles in the initiation and regulation of the immune response. However, little is known about the trafficking patterns of these cells or the tissue compartment in which they exert their regulatory activity. In this study, we determined the chemokine receptor profile expressed by CD1d-restricted T cells found in the peripheral blood of healthy volunteers as well as CD1d-restricted T cell clones. CD1d-restricted T cells were identified by Abs recognizing the invariant Valpha24 TCR rearrangement or by binding to CD1d-Fc fusion tetramers loaded with alpha-GalCer. CD1d-restricted T cells in the peripheral blood and CD1d-restricted T cell clones expressed high levels of CXCR3, CCR5, and CCR6; intermediate levels of CXCR4 and CXCR6; and low levels of CXCR1, CCR1, CCR2, and CX(3)CR1, a receptor pattern often associated with tissue-infiltrating effector Th1 cells and CD8+ T cells. Very few of these cells expressed the lymphoid-homing receptors CCR7 or CXCR5. CCR4 was expressed predominantly on CD4+, but not on double-negative CD1d-restricted T cells, which may indicate differential trafficking patterns for these two functionally distinct subsets. CD1d-restricted T cell clones responded to chemokine ligands for CXCR1/2, CXCR3, CXCR4, CXCR6, CCR4, and CCR5 in calcium flux and/or chemotaxis assays. These data indicate that CD1d-restricted T cells express a chemokine receptor profile most similar to Th1 inflammatory homing cells and suggest that these cells perform their function in peripheral tissue sites rather than in secondary lymphoid organs.  相似文献   

8.
Chronic beryllium disease (CBD) is caused by beryllium exposure and is characterized by granulomatous inflammation with accumulation of CD4+ T cells in the lung. We analyzed TCR beta-chain and alpha-chain genes expressed by these CD4+ T cells. In the lungs of individual patients, as well as among four of five CBD patients studied, different oligoclonal expansions within the Vbeta3 subset were found to express homologous or even identical CDR3 amino acid sequences. These related expansions were specific for CBD patients, were compartmentalized to lung, and persisted at high frequency in patients with active disease. Limiting dilution cloning and analysis of coexpressed TCR alpha-chain genes confirmed that these TCRs were selectively expanded by a common Ag involving beryllium. Overall, homologous TCR beta- and alpha-chains showed identical V regions and invariant charged residues within the CDR3 but considerable variability in TCRJ usage. Remarkably, CBD patients expressing nearly identical TCRs did not share common HLA-DRB1 or DQ alleles. These results implicate particular CD4+ cells in the pathogenesis of CBD and provide insight into how beryllium is recognized in human disease.  相似文献   

9.
Chronic beryllium disease (CBD) is characterized by granulomatous inflammation and the accumulation of CD4(+) T cells in the lung. Patch testing of CBD patients with beryllium sulfate results in granulomatous inflammation in the skin. We investigated whether the T cell clonal populations present in the lung of CBD patients would also be present in the involved skin of a positive beryllium patch test and thus mirror the granulomatous process in the lung. CBD patients with clonal TCR expansions in bronchoalveolar lavage (BAL) were selected for study. All three CBD patients studied had a positive response to beryllium sulfate application and a negative patch test to normal saline. Immunohistochemistry showed extensive infiltration with CD4(+) T cells and few, if any, CD8(+) T cells both at 3 days and at later times when granulomas were apparent. T cell infiltration early after skin testing appeared to be nonspecific with the TCR repertoire of infiltrating T cells being distinct from that present in BAL. At later times when granulomas were present, T cell clones in skin overlapped with those in BAL in all patients tested. Total TCR matches in skin and BAL were as high as 40% in selected Vbeta T cell subsets. Studies of peripheral blood T cells before and after patch testing provided evidence for mobilization of large numbers of pathogenic beryllium-reactive T cells into the circulating pool. These studies using skin patch testing provide new insight into the dynamics of T cell influx and mobilization during granulomatous inflammation.  相似文献   

10.
CXCR1+CD4+ T cells in human allergic disease   总被引:3,自引:0,他引:3  
Chemokine receptors play an important role in the migration of leukocytes to sites of allergic inflammation in humans. In this study, we have identified increased expression of the chemokine receptor CXCR1 on CD4+ T lymphocytes derived from patients with atopic disease compared with normal donors. Enhanced expression of CXCR1 by atopic donors was identified on freshly isolated peripheral blood cells and on expanded cell populations derived from nasal mucosal biopsies and from the periphery. Identification of CXCR1 expression on CD4 cells in the nasal mucosa was confirmed by double immunofluorescence. In addition, expression of CXCR1 was dramatically decreased in patients undergoing successful treatment of allergic rhinitis by specific immunotherapy. CXCR1 provided a functional receptor capable of regulating T cells in the context of allergic disease, since expression of CXC chemokine ligand 8 was up-regulated at the site of allergic inflammation and freshly isolated CXCR1+CD4+ cells from atopic donors showed an enhanced functional response to this ligand. CXCR1 expression on CD4+ T cells was increased in vitro in response to the pro-Th2 cytokine IL-4. Phenotypic analysis reveals that IFN-gamma expression was lower in the CXCR1+CD4+ cells. The identification of CXCR1 as a marker of allergic rhinitis reveals a possible target for therapeutic intervention in atopic disease.  相似文献   

11.
The CD8 alphabetaT cell receptor repertoire in joint fluid of individuals with active psoriatic arthritis contained an average of 32 major oligoclonal expansions in many variable genes of the TCR beta chain (BV) families, as shown by beta-chain CDR3 length analysis. Interestingly, a small number of oligoclonal expansions were shared between simultaneous samples of joint fluid and blood; however, most expansions found in joint fluid were not identifiable in blood emphasizing the immunologic specificity of the clonal events for the inflamed joint at a given point of time. The CD4 T cell joint fluid repertoire contained fewer and smaller oligoclonal expansions also largely restricted to the joint, suggesting that CD4 T cells participate perhaps by interacting cognitively to generate the CD8 clones. The inferred amino acid sequence of a single CD8 oligoclonal expansion revealed that they usually are composed of one or a few structurally related clones at the amino acid sequence level with beta-chains that encode identical or highly homologous CDR3 motifs. These were not shared among patients. Moreover, several clones that encoded the same amino acid sequence were found to be structurally distinct at the nucleotide level, strongly implying clonal selection and expansion is operating at the level of specific TCR-peptide interactions. The findings support a model of psoriatic arthritis inflammation involving extensive and selective Ag, likely autoantigen, driven intra-articular CD4, and CD8 T cell clonal expansions.  相似文献   

12.
Efficient migration of CD4+ T cells into sites of infection/inflammation is a prerequisite to protective immunity. Inappropriate recruitment, on the other hand, contributes to inflammatory pathologies. The chemokine/chemokine receptor system is thought to orchestrate T cell homing. In this study, we show that most circulating human CD4+ T cells store the inflammatory chemokine receptors CXCR3 and CXCR1 within a distinct intracellular compartment. Equipped with such storage granules, CD4+ T cells coexpressing both receptors increased from only 1% ex vivo to approximately 30% within minutes of activation with PHA or exposure to the cyclooxygenase (COX) substrate arachidonic acid. Up-regulation was TCR independent and reduced by COX inhibitors at concentrations readily reached in vivo. The inducible inflammatory CXCR3(high)CXCR1+ phenotype identified nonpolarized cells, was preferentially triggered on CCR7+CD4+ T cells, and conferred increased chemotactic responsiveness. Thus, inducible CXCR3/1 expression occurs in a large fraction of CD4+ T cells. Its dependency on COX may explain a number of established, and point toward novel, effects of COX inhibitors.  相似文献   

13.
Systemic administration of high doses of soluble Ag induces peripheral CD4+ T cell tolerance in unmanipulated hosts. To test whether tolerance is modified under conditions of transient lymphopenia, we tracked the response of 5C.C7 TCR-transgenic CD4+ T cells to i.v. moth cytochrome c peptide in mice that received low-dose gamma irradiation 10 days previously. This model was chosen because it does not support spontaneous lymphopenia-induced proliferation of 5C.C7 cells, allowing the study of Ag-specific responses without interference from simultaneous spontaneous proliferation. Clonal expansion in response to i.v. peptide was increased in irradiated mice, while clonal deletion was severely impaired in comparison with untreated animals. Amplified TCR triggering was observed in irradiated hosts, consistent with dendritic cell activation leading to enhanced Ag presentation. Failure of deletion was accompanied by persistent T cell activation and accumulation of Th1 effector cells. Up-regulated expression of IL-7R and the prosurvival protein Bcl-x(L) was associated with clonal persistence. Cells with memory and naive phenotypes were both represented within persistent clones, but no Th1 function could be demonstrated within the long-term memory population. Failure of clonal deletion in irradiated hosts represents a novel mechanism limiting TCR diversity in a lymphopenic environment and may contribute to subsequent autoimmunity.  相似文献   

14.
Nondepleting anti-CD4 Abs have been used in vivo to induce Ag-specific immunological tolerance in Th1 responses, including tissue allograft rejection and autoimmune diabetes. To examine whether this Ab (YTS177.9) acts by provoking a Th2 shift, we tested the effect in a mouse model of allergic lung inflammation. Interestingly, nondepleting anti-CD4 treatment induces tolerance to allergens as well, especially when given during initial priming. In vitro studies indicate that the effect of the Ab is independent of CD4 coreceptor function, as Ab treatment also inhibits proliferation and induces a persistent anergy in naive CD4 T cells stimulated by anti-CD3/CD28. Moreover, the Ab stimulated a distinct pattern of tyrosine phosphorylation in T cells even in the absence of TCR triggering, suggesting that signaling through CD4 alone induces significant physiological changes in T cell function. These results show that tolerance induced by anti-CD4 triggering is not a simple shift in Th1/Th2 effector function or depletion of Ag-specific cells, but may instead induce a persistent clonal anergy capable of blocking subsequent immunity.  相似文献   

15.
Relative diversity and representation of peripheral T cells bearing different TCR Vbeta families are remarkably tightly regulated between birth and advanced adulthood. By contrast, individual elderly humans and C3H.SW and B10.BR aged mice display drastic disruption in such regulation. It was suggested that the alterations in the murine aged T cell compartment were due to age-related clonal T cell expansions (TCE). Here, we studied the kinetics of homeostatic dysregulation of T cell populations in aged C57BL/6 (B6) mice. Using mAb staining, we show that the percentages of alphabeta+CD8+ or CD4+ T cells bearing different TCRVbeta elements remain virtually constant in mice up to 12 mo of age. In 22-mo-old mice, however, there is a dramatic disturbance of this pattern owing to the emergence of CD8+ TCE. Expanded T cells did not show any obvious bias in Vbeta usage and were derived in all cases examined thus far from a single clone. TCE appeared later in life, compared with B cell clonal expansions. However, and in contrast to those detected in humans, TCE were frequently unstable disappearing within 2-4 mo, with other TCE appearing within the same time frame. Additional studies carried on thymic T cells, thymectomized mice, and young T transferred cells into Rag1-/- mice suggest that the clonal expansions occur in the periphery and that their onset is accelerated by decreased thymic output and/or function(s).  相似文献   

16.
17.
MethodsA total of 85 HCC patients with hepatitis B virus (HBV) infection, 25 HBV-relative liver cirrhosis (LC) patients, and 20 healthy controls (HC) were randomly enrolled. Flow cytometric analysis, immunohistochemical staining, and relative function (i.e., cytokine secretion, B cell maturation) assays were used to analyze the properties of CXCR5+CD4+ T cells. In addition, the relationship between the frequency of CXCR5+CD4+ T cells and overall survival rates or disease-free survival rates was also analyzed by the Kaplan-Meier method.ResultsThe frequency of circulating CXCR5+CD4+ T cells was significantly decreased in HCC patients compared with HBV-relative liver cirrhosis (LC) patients and healthy controls, and the decrease in circulating CXCR5+CD4+ T cells correlated with disease progression. The proportion of infiltrated CXCR5+CD4+ T cells was significantly decreased in tumor regions compared with nontumor regions. Furthermore, compared with healthy controls, the function of circulating CXCR5+CD4+ T cells in HCC was impaired, with reduced IL-21 secretion and dysfunction in promoting B cell maturation. Importantly, follow-up data indicated that a decreased frequency of circulating CXCR5+CD4+ T cells was also associated with reduced disease-free survival time in HCC patients.ConclusionsImpairment of CD4+ T follicular helper cells may influence the development of HBV-associated HCC. Decreased CD4+ T follicular helper cells may represent a potential prognostic marker and serve as a novel therapeutic target for HCC patients.  相似文献   

18.
19.
Lymphoid oncogenesis is a life threatening complication associated with a number of persistent viral infections (e.g. EBV and HTLV-1 in humans). With many of these infections it is difficult to study their natural history and the dynamics of tumor formation. Marek's Disease Virus (MDV) is a prevalent α-herpesvirus of poultry, inducing CD4+ TCRαβ+ T cell tumors in susceptible hosts. The high penetrance and temporal predictability of tumor induction raises issues related to the clonal structure of these lymphomas. Similarly, the clonality of responding CD8 T cells that infiltrate the tumor sites is unknown. Using TCRβ repertoire analysis tools, we demonstrated that MDV driven CD4+ T cell tumors were dominated by one to three large clones within an oligoclonal framework of smaller clones of CD4+ T cells. Individual birds had multiple tumor sites, some the result of metastasis (i.e. shared dominant clones) and others derived from distinct clones of transformed cells. The smaller oligoclonal CD4+ cells may represent an anti-tumor response, although on one occasion a low frequency clone was transformed and expanded after culture. Metastatic tumor clones were detected in the blood early during infection and dominated the circulating T cell repertoire, leading to MDV associated immune suppression. We also demonstrated that the tumor-infiltrating CD8+ T cell response was dominated by large oligoclonal expansions containing both "public" and "private" CDR3 sequences. The frequency of CD8+ T cell CDR3 sequences suggests initial stimulation during the early phases of infection. Collectively, our results indicate that MDV driven tumors are dominated by a highly restricted number of CD4+ clones. Moreover, the responding CD8+ T cell infiltrate is oligoclonal indicating recognition of a limited number of MDV antigens. These studies improve our understanding of the biology of MDV, an important poultry pathogen and a natural infection model of virus-induced tumor formation.  相似文献   

20.
Transgenic (Tg) mice that overexpress the costimulatory ligand B7.2/CD86 on microglia spontaneously develop a T cell-mediated demyelinating disease. Characterization of the inflammatory infiltrates in the nervous tissue revealed a predominance of CD8+ T cells, suggesting a prominent role of this T cell subset in the pathology. In this study, we show that the same neurological disease occurred in Tg mice deficient in the generation of CD4+ T cells, with an earlier time of onset. Analysis of the CD8+ T cell repertoire at early stage of disease revealed the presence of selected clonal expansions in the CNS but not in peripheral lymphoid organs. We further show that Tg animals deficient in IFN-gamma receptor expression were completely resistant to disease development. Microglia activation that is an early event in disease development is IFN-gamma dependent and thus appears as a key element in disease pathogenesis. Collectively, our data indicate that the spontaneous demyelinating disease in this animal model occurs as a consequence of an inflammatory response initiated through the activation of CNS-specific CD8+ T cells by Tg expression of B7.2 within the target organ. Thus, autoreactive CD8+ T cells can contribute directly to the pathogenesis of neuroinflammatory diseases such as multiple sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号