首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current models suggest that the first step in the assembly of Acanthamoeba myosin-II is anti-parallel dimerization of the coiled-coil tails with an overlap of 15 nm. Sedimentation equilibrium experiments showed that a construct containing the last 15 heptads and the non-helical tailpiece of the myosin-II tail (15T) forms dimers. To examine the structure of the 15T dimer, we grew 3D and 2D crystals suitable for X-ray diffraction and electron image analysis, respectively. For both conditions, crystals formed in related space and plane groups with similar unit cells (a=87.7 A, b=64.8 A, c=114.9 A, beta=108.0 degrees). Inspection of the X-ray diffraction pattern and molecular replacement analysis revealed the orientation of the coiled-coils in the unit cell. A 3D density map at 15A in-plane resolution derived from a tilt series of electron micrographs established the solvent content of the 3D crystals (75%, v/v), placed the coiled-coil molecules at the approximate translation in the unit cell, and revealed the symmetry relationships between molecules. On the basis of the low-resolution 3D structure, biochemical constraints, and X-ray diffraction data, we propose a model for myosin interactions in the anti-parallel dimer of coiled-coils that guide the first step of myosin-II assembly.  相似文献   

2.
The design of proteins that self-assemble into well-defined, higher order structures is an important goal that has potential applications in synthetic biology, materials science, and medicine. We previously designed a two-component protein system, designated A-(+) and A-(−), in which self-assembly is mediated by complementary electrostatic interactions between two coiled-coil sequences appended to the C-terminus of a homotrimeric enzyme with C3 symmetry. The coiled-coil sequences are attached through a short, flexible spacer sequence providing the system with a high degree of conformational flexibility. Thus, the primary constraint guiding which structures the system may assemble into is the symmetry of the protein building block. We have now characterized the properties of the self-assembling system as a whole using native gel electrophoresis and analytical ultracentrifugation (AUC) and the properties of individual assemblies using cryo-electron microscopy (EM). We show that upon mixing, A-(+) and A-(−) form only six different complexes in significant concentrations. The three predominant complexes have hydrodynamic properties consistent with the formation of heterodimeric, tetrahedral, and octahedral protein cages. Cryo-EM of size-fractionated material shows that A-(+) and A-(−) form spherical particles with diameters appropriate for tetrahedral or octahedral protein cages. The particles varied in diameter in an almost continuous manner suggesting that their structures are extremely flexible.  相似文献   

3.
Human apolipoprotein C-I (apoC-I) is an exchangeable apolipoprotein that binds to lipoprotein particles in vivo. In this study, we employed a LC-MS/MS assay to demonstrate that residues 38-51 of apoC-I are significantly protected from proteolysis in the presence of 1,2-dimyristoyl-3-sn-glycero-phosphocholine (DMPC). This suggests that the key lipid-binding determinants of apoC-I are located in the C-terminal region, which includes F42 and F46. To test this, we generated site-directed mutants substituting F42 and F46 for glycine or alanine. In contrast to wild-type apoC-I (WT), which binds DMPC vesicles with an apparent Kd [Kd(app)] of 0.89 microM, apoC-I(F42A) and apoC-I(F46A) possess 2-fold weaker affinities for DMPC with Kd(app) of 1.52 microM and 1.58 microM, respectively. However, apoC-I(F46G), apoC-I(F42A/F46A), apoC-I(F42G), and apoC-I(F42G/F46G) bind significantly weaker to DMPC with Kd(app) of 2.24 microM, 3.07 microM, 4.24 microM, and 10.1 microM, respectively. Sedimentation velocity studies subsequently show that the protein/DMPC complexes formed by these apoC-I mutants sediment at 6.5S, 6.7S, 6.5S, and 8.0S, respectively. This is compared with 5.0S for WT apoC-I, suggesting the shape of the particles was different. Transmission electron microscopy confirmed this assertion, demonstrating that WT forms discoidal complexes with a length-to-width ratio of 2.57, compared with 1.92, 2.01, 2.16, and 1.75 for apoC-I(F42G), apoC-I(F46G), apoC-I(F42A/F46A), and apoC-I(F42G/F46G), respectively. Our study demonstrates that the C-terminal amphipathic alpha-helix of human apoC-I contains the major lipid-binding determinants, including important aromatic residues F42 and F46, which we show play a critical role in stabilizing the structure of apoC-I, mediating phospholipid interactions, and promoting discoidal particle morphology.  相似文献   

4.
Histone octamers were covalently labelled with aurothiomalate at amino groups by the method of carbodiimide activation. The labelling procedure was demonstrated to result in the specific covalent coupling through a single bond of the heavy metal atom label to protein amino groups. Such octamers were dissociated to yield soluble H2A-H2B dimers containing three gold atoms per dimer. The dimers were reconstituted with native H3-H4 tetramers to form labelled octamers, which were crystallized to form helical tubes. This strongly suggests that this procedure resulted in minimal changes of protein conformation.  相似文献   

5.
The analytical ultracentrifuge (AUC) is a powerful biophysical tool that allows us to record macromolecular sedimentation profiles during high speed centrifugation. When properly planned and executed, an AUC sedimentation velocity or sedimentation equilibrium experiment can reveal a great deal about a protein in regards to size and shape, sample purity, sedimentation coefficient, oligomerization states and protein-protein interactions.This technique, however, requires a rigorous level of technical attention. Sample cells hold a sectored center piece sandwiched between two window assemblies. They are sealed with a torque pressure of around 120-140 in/lbs. Reference buffer and sample are loaded into the centerpiece sectors and then after sealing, the cells are precisely aligned into a titanium rotor so that the optical detection systems scan both sample and reference buffer in the same radial path midline through each centerpiece sector while rotating at speeds of up to 60, 000 rpm and under very high vacuumNot only is proper sample cell assembly critical, sample cell components are very expensive and must be properly cared for to ensure they are in optimum working condition in order to avoid leaks and breakage during experiments. Handle windows carefully, for even the slightest crack or scratch can lead to breakage in the centrifuge. The contact between centerpiece and windows must be as tight as possible; i.e. no Newton s rings should be visible after torque pressure is applied. Dust, lint, scratches and oils on either the windows or the centerpiece all compromise this contact and can very easily lead to leaking of solutions from one sector to another or leaking out of the centerpiece all together. Not only are precious samples lost, leaking of solutions during an experiment will cause an imbalance of pressure in the cell that often leads to broken windows and centerpieces. In addition, plug gaskets and housing plugs must be securely in place to avoid solutions being pulled out of the centerpiece sector through the loading holes by the high vacuum in the centrifuge chamber. Window liners and gaskets must be free of breaks and cracks that could cause movement resulting in broken windows.This video will demonstrate our procedures of sample cell assembly, torque, loading and rotor alignment to help minimize component damage, solution leaking and breakage during the perfect AUC experiment.  相似文献   

6.
The large multidomain muscle protein myosin binding protein C (MyBP-C) has been implicated for some time in cardiac disease while until recently little was known about its structure and function. Here we present a detailed study of the central domain C5 of the cardiac isoform of MyBP-C. This domain is unusual in several aspects. Firstly it contains two sizeable insertions compared to the non-cardiac isoforms. The first insertion comprises the linker between domains cC4 and cC5 that is elongated by ten amino acid residues, the second insertion comprises an elongation of the CD-loop in the middle of the domain by approximately 30 amino acid residues. Secondly two point mutations linked to familial hypertrophic cardiomyopathy (FHC) have been identified in this domain. This work shows that the general fold of cC5 is in agreement with the IgI family of beta-sandwich structures. The long cardiac-specific linker between cC4 and cC5 is not a linker at all but an integral part of the fold of cC5, as evidenced by an unfolded mutant in which this segment was removed. The second insertion is shown to be unstructured, highly dynamic and mostly extended according to NMR relaxation measurements and analytical ultracentrifugation. The loss of several key interactions conserved in the CD-loop of the IgI fold is assumed to be responsible for the low stability of cC5 compared to other IgI domains from titin and MyBP-C itself. The low thermodynamic stability of cC5 is most evident in one of the two FHC-linked mutations, N755K (Asn115 in this construct) which is mainly unfolded with a small proportion of a native-like folded species. In contrast, the second FHC-linked mutation, R654H (Arg14 in this construct) is as well folded and stable as the wild-type. This residue is located in the extended beta-bulge at the N terminus of the protein, pointing towards the surface of the CFGA' beta-sheet. This position is in agreement with recent data pointing to a function of Arg654 in an intermolecular interaction with MyBP-C domain cC8.  相似文献   

7.
Residues 302-326 of the catalytic (gamma) subunit of phosphorylase kinase (PhK) may comprise an autoinhibitory, pseudosubstrate domain that binds calmodulin. To study this, the cDNA corresponding to rabbit muscle PhKgamma was expressed using Escherichia coli. This yielded two stable, high-activity PhKgamma forms (35 and 42 kDa by SDS-PAGE) that were smaller than an authentic sample of rabbit muscle PhKgamma (45 kDa by SDS-PAGE). Each recombinant form was purified to homogeneity. The N-terminal sequence of the larger, 42-kDa form (pk42) matched that of the rabbit muscle enzyme. This suggested that pk42 consisted of PhKgamma residues 1-362, including the putative calmodulin-binding, autoinhibitory domain. Kinetic parameters obtained for pk42 were like those previously reported for the intact gamma subunit. This implied that the lack of 25 PhKgamma C-terminal residues did not affect phosphorylase kinase activity, but greatly improved enzyme stability. An additional 60 residues were removed from the C-terminus of pk42 using the protease m-calpain. This increased the kinase activity 1.5-fold. Consistent with this, the activity of a mutant PhKgamma that consisted of residues 1-300, denoted gamma1-300, was like that of the m-calpain-treated enzyme. Therefore, although the effect was small, some influence by the C-terminus of pk42 was noted. Moreover, when pk42 was incubated with ATP alone, a C-terminal threonine residue became phosphorylated. Although the influence of this autophosphorylation cannot be inferred from this data, it was evidence that the C-terminus accessed the enzyme's active site. Taken together, these data imply that pk42 will be useful to study phosphorylase kinase structure/activity relationships.  相似文献   

8.
9.
Perfringolysin O (theta-toxin) is a pore-forming cytolysin whose activity is triggered by binding to cholesterol in the plasma membrane. The cholesterol binding activity is predominantly localized in the beta-sheet-rich C-terminal half. In order to determine the roles of the C-terminal amino acids in theta-toxin conformation and activity, mutants were constructed by truncation of the C terminus. While the mutant with a two-amino acid C-terminal truncation retains full activity and has similar structural features to native theta-toxin, truncation of three amino acids causes a 40% decrease in hemolytic activity due to the reduction in cholesterol binding activity with a slight change in its higher order structure. Furthermore, both mutants were found to be poor at in vitro refolding after denaturation in 6 M guanidine hydrochloride, resulting in a dramatic reduction in cholesterol binding and hemolytic activities. These activity losses were accompanied by a slight decrease in beta-sheet content. A mutant toxin with a five-amino acid truncation expressed in Escherichia coli is recovered as a further truncated form lacking the C-terminal 21 amino residues. The product retains neither cholesterol binding nor hemolytic activities and shows a highly disordered structure as detected by alterations in the circular dichroism and tryptophan fluorescence spectra. These results show that the C-terminal region of theta-toxin has two distinct roles; the last 21 amino acids are involved to maintain an ordered overall structure, and in addition, the last two amino acids at the C-terminal end are needed for protein folding in vitro, in order to produce the necessary conformation for optimal cholesterol binding and hemolytic activities.  相似文献   

10.
A facile method for the formation of covalent bonds between protein molecules is zero-length cross-linking. This method enables the formation of cross-links without use of any chemical reagents. Here, the cross-linking is performed for lysozyme, peroxidase (a glycoprotein) and between lysozyme–peroxidase by the method of Simons et al. [B.L. Simons, M.C. King, T. Cyr, M.A. Hefford, H. Kaplan, Covalent cross-linking of protein without chemical reagents, Protein Sci. 2002, 11, 1558–1564]. Approximately one-third of the total lysozyme becomes cross-linked and the dimer form was the major product for both enzymes. This modification induced some changes in the kinetic properties of the dimer peroxidase, as evident by two-fold increasing of Vmax compared to the monomer but the enzymatic activity of cross-linked lysozyme dimer was the same as monomer. The activity of lysozyme dimer remained constant up to 10 min at 80 °C, while peroxidase activity of both monomer and dimer began to decrease after heating. The structural changes of the enzymes were investigated by circular dichroism and intrinsic fluorescence techniques. Near UV result showed lysozyme possess a compact structure in the dimer form but disruption of tertiary structure of peroxidase dimer was observed. Also conformational changes were detected and discussed by intrinsic fluorescence experiments. Effect of several metals in the formation of lysozyme dimer showed that Co2+ is the most effective one but its effect was marginal. At the end formation of heterogeneous dimer, peroxidase–lysozyme, was achieved using this method.  相似文献   

11.
C-protein is a component of thick filaments of skeletal muscle myofibrils. It is bound to the assembly of myosin tails that forms the filament backbone. We report here that C-protein can also bind to F-actin, with a limiting stoichiometry of approximately one C-protein molecule per 3 to 5 actin subunits and a dissociation constant in the micromolar range at ionic strength 0·07. The binding is not significantly affected by ATP, calcium ions or temperature, or by the presence of tropomyosin on the actin, but it is weakened by increasing ionic strength. Myosin subfragment-1 (S-1) competes with C-protein for binding to actin. In the absence of ATP, S-1 displaces nearly all bound C-protein from actin, while in the presence of ATP, C-protein inhibits the actin activation of S-1 ATPase. Although there is no direct evidence that interaction of C-protein with actin is physiologically significant, the lenght of the C-protein molecule is sufficient so that it could make contact with the thin filaments in muscle while remaining attached to the thick filaments.  相似文献   

12.
Summary— In contrast to general belief, the response of rabbit muscles to denervation is maturation to slow-like type muscles [7]. We report now an investigation by biochemical, morphological, and mechanical studies of the time course effects of muscle denervation on the slow-type soleus and fast-type gastrocnemius to help clucidate the mechanism of maturation of rabbit denervated muscles to slow-like muscles. In both muscles, denervation induced selective progressive atrophy of most fast fibers and hypertrophy of many slow fibers which displayed wide Z-lines; this was accompanied by the appearance of hybrid LC1F- and LC1E-associated slow myosins. The percentage of slow myosins increased with age similarly in the contralateral and denervated soleus. On the other hand, the percentage of slow myosins remained low in the contralateral gastrocnemius, whereas it increased to 95% in the denervated gastrocnemius; in the denervated gastrocnemius, the percentage of slow myosins reached 50% at about 35 days postnatal. At this age, the maximal shortening velocity of the denervated gastrocnemius and its twitch contraction time were already those of a slow-type muscle. This suggests that in addition to myosin, other proteins contributed to the mechanical properties of the denervated gastrocnemius. Transformation of rabbit denervated muscles to slow-like type muscles, which are associated with a lower energy requirement and higher muscle endurance than fast-type muscles, may constitute an adequate model for human neuromuscular pathology.  相似文献   

13.
Bovine acidic seminal fluid protein (aSFP) is a 1.29 kDa polypeptide of the spermadhesin family built by a single CUB domain architecture. The CUB domain is an extracellular module present in 16 functionally diverse proteins. To determine the three-dimensional structure of aSFP, the protein was crystallized at 21 degrees C by vapor diffusion in hanging drops, using ammonium sulfate, pH 4.7, and polyethyleneglycol 4,000 as precipitants, containing 10% dioxane to avoid the formation of clustered crystals. Elongated prismatic crystals with maximal size of 0.6 x 0.3 x 0.2 mm3 diffract to beyond 1.9 A resolution and belong to space group P2(1)2(1)2(1), with cell parameters a = 52.4 A, b = 41.5 A, c = 48.2 A. There is one aSFP molecule per asymmetric unit, which corresponds to a crystal volume per unit molecular mass of 2.04 A3/Da, and analytical ultracentrifugation analysis show that aSFP is a monomeric protein.  相似文献   

14.
The norepinephrine transporter(NET) is a member of the Na^ /Cl^- dependent neurotransmitter transporter family and constitutes the target of several clinically important antidepressants.To delineate the critical amino acid residues and the function of C-terminal in regulating transport activity of NET,here we constructed two site mutants (V70F,F72V;V70I,F72V) and one C-terminal truncated mutant (Δ 611-617).The wild type and mutants of NET were expressed in Xenopus oocytes by injection of their cRNA.We found that all of these mutants lost their transport activity.These results indicate that the amino acid residues of V70 and F72,and the last seven amino acids of C-terminal are essential to the transport activity of NET.  相似文献   

15.
Identifying the influence of stochastic processes and of deterministic processes, such as dispersal of individuals of different species and trait‐based environmental filtering, has long been a challenge in studies of community assembly. Here, we present the Univariate Community Assembly Analysis (UniCAA) and test its ability to address three hypotheses: species occurrences within communities are (a) limited by spatially restricted dispersal; (b) environmentally filtered; or (c) the outcome of stochasticity—so that as community size decreases—species that are common outside a local community have a disproportionately higher probability of occurrence than rare species. The comparison with a null model allows assessing if the influence of each of the three processes differs from what one would expect under a purely stochastic distribution of species. We tested the framework by simulating “empirical” metacommunities under 15 scenarios that differed with respect to the strengths of spatially restricted dispersal (restricted vs. not restricted); habitat isolation (low, intermediate, and high immigration rates); and environmental filtering (strong, intermediate, and no filtering). Through these tests, we found that UniCAA rarely produced false positives for the influence of the three processes, yielding a type‐I error rate ≤5%. The type‐II error rate, that is, production of false negatives, was also acceptable and within the typical cutoff (20%). We demonstrate that the UniCAA provides a flexible framework for retrieving the processes behind community assembly and propose avenues for future developments of the framework.  相似文献   

16.
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115–135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A, NSmW121A, NSmD122A, NSmR124A, and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A, NSmW121A, or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q, which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.  相似文献   

17.
Herpes simplex virus type 1 infection results in a reorganization of antigens associated with the small nuclear ribonucleoprotein particles (snRNPs), resulting in the formation of prominent clusters near the nuclear periphery. In this study, we show that the immediate-early protein ICP27, which is involved in the impairment of host cell splicing and in the changes in the distribution of snRNPs, is also required for reassorting the SR domain splicing factor SC35. Other viral processes, such as adsorption and penetration, shutoff of host protein synthesis, early and late gene expression, and DNA replication, do not appear to play a role in changing the staining pattern of splicing antigens. Furthermore, the C-terminal repressor region of ICP27, which is required for the inhibitory effects on splicing, also is involved in redistributing the snRNPs and SC35. During infection or transfection with five different repressor mutants, the speckled staining pattern characteristic of uninfected cells was seen and the level of a spliced target mRNA was not reduced. Infections in the presence of activator mutants showed a redistributed snRNP pattern and a decreased accumulation of spliced target mRNA. Moreover, two arginine-rich regions in the N-terminal half of ICP27 were not required for the redistribution of snRNPs or SC35. Substitution of these regions with a lysine-rich sequence from simian virus 40 large-T antigen resulted in a redistribution of splicing antigens. Unexpectedly, a repressor mutant with a ts phenotype showed a redistributed staining pattern like that seen with wild-type infected cells. During infections with this ts mutant, splicing was not inhibited, as shown in this and previous studies, confirming its repressor phenotype. Furthermore, both the mutant and the wild-type protein colocalized with snRNPs. Therefore, the redistribution of snRNPs and SC35 correlates with ICP27-mediated impairment of host cell splicing, but these alterations are not sufficient to fully inhibit splicing. This indicates that active splicing complexes are still present even after dramatic changes in the organization of the snRNPs.  相似文献   

18.
Comparison of six urease sequences revealed the presence of 10 conserved histidine residues (H96 in the gamma subunit, H39 and H41 in beta, and H134, H136, H219, H246, H312, H320, and H321 in the alpha subunit of the Klebsiella aerogenes enzyme). Each of these residues in K. aerogenes urease was substituted with alanine by site-directed mutagenesis, and the mutant proteins were purified and characterized in order to identify essential histidine residues and assign their roles. The gamma H96A, beta H39A, beta H41A, alpha H312A, and alpha H321A mutant proteins possess activities and nickel contents similar to wild-type enzyme, suggesting that these residues are not essential for substrate binding, catalysis, or metal binding. In contrast, the alpha H134A, alpha H136A, and alpha H246A proteins exhibit no detectable activity and possess 53%, 6%, and 21% of the nickel content of wild-type enzyme. These results are consistent with alpha H134, alpha H136, and alpha H246 functioning as nickel ligands. The alpha H219A protein is active and has nickel (approximately 1.9% and approximately 80%, respectively, when compared to wild-type protein) but exhibits a very high Km value (1,100 +/- 40 mM compared to 2.3 +/- 0.2 mM for the wild-type enzyme). These results are compatible with alpha H219 having some role in facilitating substrate binding. Finally, the alpha H320A protein (Km = 8.3 +/- 0.2 mM) only displays approximately 0.003% of the wild-type enzyme activity, despite having a normal nickel content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Molecular variations of Spiranthes sinensis Ames var. australis (R.Br.) H. Hara et Kitam. ex Kitam. in Japan were examined to evaluate the validity of the seasonally differentiated groups and a dwarf form of the species, which is endemic to Yakushima Island, Japan. Sequence differences in the plastid trnL-F locus clearly distinguished Japanese S. sinensis var. australis from S. sinensis var. sinensis collected from Ryukyu. In contrast, the trnL-F sequence of S. sinensis var. australis from Sabah, Malaysia, clearly differed from that of Japanese S. sinensis var. australis, suggesting genetic heterogeneity of Spiranthes sinensis var. australis in Asia. Moreover, a molecular analysis based on the sequences of nuclear ITS1 regions indicated that there are two major groups of S. sinensis var. australis in Japan, with a geographic distribution boundary on Kyushu Island. However, the trnL-F and ITS1 sequences did not support the genetic differentiation of the seasonally differentiated groups or the dwarf form from the other Japanese individuals. Based on these molecular data, the systematic treatment of physiological and morphological variations in the Japanese population of S. sinensis. var. australis is discussed.  相似文献   

20.
Main-chain conformations where one amino acid residue can be described as gamma(R) (or alpha(R)) and an adjacent one as gamma(L) (or alpha(L)) mostly result in the three main-chain NH groups (of the two residues and the one following) forming a depression that can accommodate an atom with a whole or partial negative charge. We propose the name nest for this feature. The negatively charged atom, when present, is also stabilized by hydrogen-bonding with the NH groups. In an average protein, 8 % of residues are involved in a nest. The anion, or partially negatively charged atom, that often occupies the nest may be a main-chain carbonyl oxygen atom as in the paperclip, also called the Schellman loop, and the oxyanion hole of serine proteases. It can be a phosphate group, as in the P-loop superfamily that binds ATP and GTP. Overlapping, compound, nests are observed often, as in the P-loop, which has five successive NH groups that bind the beta phosphate group of nucleotide triphosphate. The longest compound nests are found surrounding cysteine-bound [2Fe2S] and [4Fe4S] iron-sulfur centers, which are also anionic; nests may encourage binding of the more reduced forms. The nest is a novel feature in the sense of not having been described as a unique motif with anion-binding potential before, although some of the situations where it occurs are familiar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号