首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological restoration frequently involves setting fixed species or habitat targets to be achieved by prescribed restoration activities or through natural processes. Where no reference systems exist for defining outcomes or where restoration is planned on a large spatial scale, a more ‘open-ended’ approach to defining outcomes may be appropriate. Such approaches require changes to the definition of goals and the design of monitoring and evaluation activities. We suggest that in open-ended projects restoration goals should be framed in terms of promoting natural processes, mobile landscape mosaics and improved ecosystem services. Monitoring can then focus on the biophysical processes that underpin the development of habitat mosaics and the provision of ecosystem services, on the way habitat mosaics change through time and on species that can indicate the changing landscape attributes of connectivity and scale. Stakeholder response should be monitored since an open-ended restoration approach is unusual and can encounter institutional and societal constraints. Evaluation should focus on reporting changing restoration impacts and benefits rather than on achieving a pre-defined concept of ecological success.  相似文献   

2.
I discuss ecological and cultural restoration within the broader context of the critical transition period from the fossil fuel age to the post-industrial global information age. In this cultural evolutionary process, the restoration of natural and cultural landscapes should play a vital role. For this purpose, it has to be guided by a holistic and transdisciplinary systems approach, aiming not only at the organismic but also at the functional and structural restoration of ecological and cultural diversity as total landscape ecodiversity. For the development of suitable restoration strategies, a clear distinction has to be made between different functional classes of natural and cultural solar-powered biosphere and fossil-powered technosphere landscapes, according to their inputs and throughputs of energy and materials, their organisms, their control by natural or human information, their internal self-organization and their regenerative capacities. Not only technosphere landscapes but also intensive agro-industrial landscapes have lost these capacities and are heavily subsidized by fossil energy and chemicals, to the detriment of the environment and human health. They therefore have to be rehabilitated by more sustainable but not less productive agricultural systems based on organic farming. But their natural regenerative capacities can be restored only by regenerative systems, with the help of cultural "neotechnic" information. The promise for an urgently required evolutionary symbiosis between human society and nature in a sustainable post-industrial total human ecosystem lies in the functional integration of such innovative regenerative systems and all natural and cultural biosphere landscapes with healthier and more livable technosphere landscapes. To this goal, ecological and cultural landscape restoration can make an important contribution.  相似文献   

3.
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives.  相似文献   

4.
Neotropical rainforests are global biodiversity hotspots and are challenging to restore. A core part of this challenge is the very long recovery trajectory of the system: recovery of structure can take 20–190 years, species composition 60–500 years, and reestablishment of rare/endemic species thousands of years. Passive recovery may be fraught with instances of arrested succession, disclimax or emergence of novel ecosystems. In these cases, active restoration methods are essential to speed recovery and set a desired restoration trajectory. Tree plantation is the most common active approach to reestablish a high density of native tree species and facilitate understory regeneration. While this approach may speed the successional trajectory, it may not achieve, and possibly inhibit, a long-term restoration trajectory towards the high species diversity characteristic of these forests. A range of nucleation techniques (e.g., tree island planting) are important restoration options: although they may not speed recovery of structure as quickly as plantations, their emphasis on natural regeneration processes may enable greater and more natural patterns of diversity to develop. While more work needs to be done to compare forest restoration techniques in different environmental contexts, it appears that nucleation and, at times, passive restoration may best preserve the diverse legacy of these forested systems (both with lower costs). An integrated approach using both plantation productivity but also the natural functions associated with nucleation may develop composition and diversity trajectory desired in Neotropical conservation efforts.  相似文献   

5.
吴舒尧  黄姣  李双成 《生态学报》2017,37(20):6986-6999
全球范围内关键生态系统服务的减少使人类社会面临巨大的威胁,生物多样性是生态系统提供各种产品和服务的基础。生态恢复工程对退化的生态系统服务和生物多样性进行修复,对于缓解人类环境压力具有非常重要的意义。长期的理论和实践工作形成了多种生态恢复措施:(1)单纯基于生态系统自我设计的自然恢复方式,(2)人为设计对环境条件进行干预,反馈影响生态系统的自我设计,(3)人为设计对目标种群和生态系统进行直接干预和重建。这3类恢复方式可以在不同程度上定向的影响生态系统的恢复进程,反映了人类对生态系统的低度、中度和高度介入。哪种恢复方式和介入程度能够实现更好的恢复效果,是生态恢复学中的一个关键问题,但到目前为止,虽广有争议,却无定量的分析和结论。针对这个空白,通过对ISI Web of Knowledge数据库中生态恢复相关文献的整合分析,基于数学统计的方法定量比较在不同条件下低度介入(自然恢复)、中度介入(环境干预)和高度介入(直接干预)3种恢复方式对生态系统服务与生物多样性的恢复效果。论文从4个方面展开研究:(1)低度、中度、高度介入生态恢复方式的划分,(2)比较3大类介入方式对生态系统服务和生物多样性恢复效果的差异,(3)不同气候条件、生态系统类型和恢复时间等背景因素的影响,(4)生物多样性恢复和生态系统服务恢复之间的关系。研究结果揭示了不同生态恢复方式的适用条件,以及对生物多样性和生态系统恢复相互关系的作用,对生态恢复实践中恢复方式的选择有指导作用。对未来的研究也有启示意义,如针对特定生态系统服务或具体研究问题进一步探索低度、中度和高度介入生态恢复方式的作用规律和机制;将地区的社会经济水平、生态系统的受损程度等因素纳入生态恢复方式的考察,以最优化生态恢复成本-效率等。  相似文献   

6.
Evans and Davis claim the SER Standards use a “pure naturalness” model for restoration baselines and exclude most cultural ecosystems from the ecological restoration paradigm. The SER Standards do neither. The SER Standards consider both “natural” ecosystems (that are unequivocally not cultural) and “similar” cultural ecosystems as suitable reference models. Furthermore, Evans and Davis propose assessing whether a cultural ecosystem exhibits “good, bad, or neutral impacts from humans on ecosystems” as the basis for reference models. We argue that such an approach would overlook the indispensability of native ecosystem benchmarks to measure human impacts and provide a springboard for social‐ecological restoration.  相似文献   

7.
High levels of human activity have affected the quality and usability of the natural landscape, leading to habitat degradation, loss of connectivity between sites, and reduced chances of long‐term survival for individual species. In line with conservation policy, ecological restoration practitioners try to improve degraded sites by means of reestablishing species lost from these sites, thereby returning ecological functionality and maintaining biological diversity. It may appear difficult to integrate the long‐term potential impacts of climate change within restoration strategies. However, more refined climate projections and species distribution models provide us with better understanding of likely scenarios, enabling us to consider future proofing as an integral part of the design of restoration sites, aiding plant conservation. We believe that it is possible to go one step further with a closer integration of restoration and conservation objectives. We introduce the novel concepts of “protorefuges” and “protorefugia”—restoration sites that threatened species can be translocated to, where the restoration design can be specifically adapted to help reduce the decline of threatened species at the leading and trailing edges (respectively) of bioclimatic envelope shifts. This is particularly relevant for nuclear decommissioning sites, which may be free from human activity for decades to centuries.  相似文献   

8.
Restoration today must satisfy a wide array of societal goals. In the past, success or failure of a project was dependent on minimal, measurable criteria. Simplistic designs and compliance criteria are being replaced by technically sophisticated projects and design goals that have variable criteria for success. Instead of a being static target, success criteria can be altered through a process termed Adaptive Management. Natural resource damage can be assessed accurately through a Habitat Equivalency Analysis. Acceptable progress toward compliance criteria is best measured by trends approaching a desired end point. An approach using natural variation of similar habitats also shows promise as a means of assessing compliance. Large-scale restoration projects are underway, directly and indirectly underwritten by the public. If the public is to continue support for restoration it must be a part of the decision-making process. This can be best accomplished through landscape management plans with clear objectives and goals that the public understands and that benefit the public at large. Technical problems in accomplishing and evaluating restoration projects will be solved if the experience gained at each site is used in future projects.  相似文献   

9.
A variety of ecological systems around the world have been damaged in recent years, either by natural factors such as invasive species, storms and global change or by direct human activities such as overfishing and water pollution. Restoration of these systems to provide ecosystem services entails significant economic benefits. Thus, choosing how and when to restore in an optimal fashion is important, but has not been well studied. Here we examine a general model where population growth can be induced or accelerated by investing in active restoration. We show that the most cost‐effective method to restore an ecosystem dictates investment until the population approaches an ‘economic restoration threshold’, a density above which the ecosystem should be left to recover naturally. Therefore, determining this threshold is a key general approach for guiding efficient restoration management, and we demonstrate how to calculate this threshold for both deterministic and stochastic ecosystems.  相似文献   

10.
The novel ecosystem (NE) concept has been discussed in terrestrial restoration ecology over the last 15 years but has not yet found much traction in the marine context. Against a background of unprecedented environmental change, managers of natural marine resources have portfolios full of altered systems for which restoration to a previous historical baseline may be impractical for ecological, social, or financial reasons. In these cases, the NE concept is useful for weighing options and emphasizes the risk of doing nothing by forcing questions regarding the value of novelty and how it can best be managed in the marine realm. Here, we explore how the concept fits marine ecosystems. We propose a scheme regarding how the NE concept could be used as a triage framework for use in marine environments within the context of a decision framework that explicitly considers changed ecosystems and whether restoration is the best or only option. We propose a conceptual diagram to show where marine NEs fit in the continuum of unaltered to shifted marine ecosystems. Overall, we suggest that the NE concept is of interest to marine ecologists and resource managers because it introduces a new vocabulary for considering marine systems that have been changed through human actions but have not shifted to an alternate stable state. Although it remains to be seen whether the concept of marine NEs leads to better conservation and restoration decisions, we posit that the concept may help inform management decisions in an era of unprecedented global marine change.  相似文献   

11.
Assessing the response of salt marshes to tidal restoration relies on comparisons of ecosystem attributes between restored and reference marshes. Although this approach provides an objective basis for judging project success, inferences can be constrained if the high variability of natural marshes masks differences in sampled attributes between restored and reference sites. Furthermore, such assessments are usually focused on a small number of restoration projects in a local area, limiting the ability to address questions regarding the effectiveness of restoration within a broad region. We developed a hierarchical approach to evaluate the performance of tidal restorations at local and regional scales throughout the Gulf of Maine. The cornerstone of the approach is a standard protocol for monitoring restored and reference salt marshes throughout the region. The monitoring protocol was developed by consensus among nearly 50 restoration scientists and practitioners. The protocol is based on a suite of core structural measures that can be applied to any tidal restoration project. The protocol also includes additional functional measures for application to specific projects. Consistent use of the standard protocol to monitor local projects will enable pooling information for regional assessments. Ultimately, it will be possible to establish a range of reference conditions characterizing natural tidal wetlands in the region and to compare performance curves between populations of restored and reference marshes for assessing regional restoration effectiveness.  相似文献   

12.
延安市生态修复双赢模式实证研究   总被引:6,自引:3,他引:3  
曹世雄  刘伟  赵麦换  冯飞 《生态学报》2018,38(22):7879-7885
"越穷越垦、越垦越穷"的贫困陷阱是困扰全球可持续发展的学术难题之一,探索摆脱贫困陷阱的有效途径,是生态修复的核心目标。因此,生态修复不仅要依据当地气候与地理条件开展生态治理,同时要改变当地居民的生产生活行为,发展有利于生态修复的绿色产业,使当地居民的生产生活行为既可以提高收入、改善生活,又有利于生态修复。从而摆脱"越穷越垦、越垦越穷"的被动局面,实现生态修复与居民生计改善的双赢目标。为了验证这一模式的可行性,该研究在退耕还林项目实施的基础上,通过补短板的方式,在延安市开展了生态修复双赢模式实证研究。结果表明,新方案实施前,延安市NDVI增长速度是陕西省平均水平的41%;新方案实施后,是陕西省平均水平的195%,新方案的贡献率为74.0%。双赢模式较好解决了环境保护与社会经济发展彼此分离的这一矛盾,提高了生态修复的治理效果,为我国生态脆弱区精准扶贫和生态文明建设提供了理论依据和治理样板。  相似文献   

13.
A distinctive feature of ecological restoration is that the human presence in the natural landscape can be perceived as beneficial and not necessarily as harmful. Consequently, negotiations between heterogeneous actors involved and reactions to developments in different ecosystems become part of the scientific practice of restoration. This paper discusses some implications of restoration practice for the science of ecology in connection with recent debates about a new mode of knowledge production in science. I illustrate how different types of expertise from several backgrounds can be fed into each step of restoration implementation via alternate phases of selection and of corroboration by use to expose it to further observation in order to develop more scientifically and socially robust restoration strategies.  相似文献   

14.
“再野化”:山水林田湖草生态保护修复的新思路   总被引:2,自引:0,他引:2  
杨锐  曹越 《生态学报》2019,39(23):8763-8770
作为一种新兴的生态保护修复方法,“再野化”(rewilding)是指特定区域中荒野程度的提升过程,尤其强调提升生态系统韧性和维持生物多样性。再野化实践的核心要素包括保护核心荒野地、增加荒野地的连通性、保护和重引入关键种(包括大型食肉动物)、适度允许自然干扰的发生、降低人类干扰和管理程度、拆除部分人工基础设施等。评述了北美洲和欧洲的再野化实践。通过比较研究,提出基于再野化的我国山水林田湖草生态保护修复的新思路,包括战略层面的5项转变和行动层面的5项建议。5项战略转变,包括从还原论思维转向整体思维、从工程性修复转向保护优先和自然恢复为主、从项目尺度转向景观尺度、从短期试点转向长期实践、从政府主导转向多方参与;5项行动建议,包括开展荒野和再野化基础调查、保护仅存的高价值荒野地、探索“城-乡-野”系统性再野化途径、以荒野保护区和再野化区域为核心建立大尺度景观保护网络、开展基于再野化的生态体验和自然教育。  相似文献   

15.
马华  钟炳林  岳辉  曹世雄 《生态学报》2015,35(18):6148-6156
自然修复主要通过封山育林、禁止农作、禁牧禁伐措施,减少人类对环境的扰动,利用自然生态环境的自我演替能力,恢复生态环境,实现生态平衡。自然修复作为一种成本低、无污染的生态修复手段很早就受到人们重视,但关于自然修复适用范围的研究较少。为了正确认识自然修复的适用性,选择了我国南方红壤地区长期遭受严重土壤侵蚀危害的福建省长汀县为研究对象,通过对长期自然修复样地的监测资料分析,发现在坡度条件为20%—30%下,当植被覆盖度低于20%的退化阈值时,严重的土壤侵蚀引发的土壤肥力损失将导致生态系统自我退化,自然修复不仅无法改善当地的生态系统,反而会引起生态系统的进一步恶化。由此可见,自然修复并不适合所有的生态系统,当生态系统退化到一定程度时,退化生态系统必须通过人工干预来修复。因此,必须探索适合当地的生态修复模式,在生态系统退化突破阈值时,红壤丘陵区应通过恢复土壤肥力、促进自然植被覆盖度增加、综合提高生态系统健康水平。  相似文献   

16.
Spatial prioritization techniques are commonly used in conservation planning, but are relatively new for planning restoration programs. Typically, ecological data, and more recently data on economic costs and vulnerability of sites, are used. However, the effectiveness of restoration action ultimately relies on a combination of the appropriate ecological restoration techniques and the human and social dynamics of social‐ecological systems. Surveys were conducted with 29 land managers within the Makana Municipality of the Eastern Cape, South Africa, to identify a range of human and social factors hypothesized to define the potential effectiveness of restoration action. Land managers with similar characteristics were grouped using a cluster analysis, and the groups ranked and mapped in geographical information system (GIS) to provide a spatial representation of restoration opportunity. The total number of questions were reduced by 35.6%, a step toward developing a rapid assessment approach for assessing land managers' potential participation in restoration initiatives. Identifying and incorporating human and social factors that directly influence restoration prioritization should promote efficient and effective implementation of restoration actions by the Working for Woodlands programme, who are looking to funding landscape‐scale restoration through carbon trading.  相似文献   

17.
Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations. Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton's K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction between range and fall water depth was the most important variable (relative weight of 1.0) followed by spring and fall water depths (0.99), range (0.96), hydroperiod (0.95) and interaction between range and hydroperiod (0.95). Our work provides additional evidence that restoring a greater range in annual water depths is important for improvement of alligator body condition and ecosystem function. This information can be incorporated into both planning and operations to assist in reaching Everglades restoration goals.  相似文献   

18.
黄剑  张杰龙 《生物信息学》2018,25(10):86-91
河道是生态敏感、脆弱而又具有显著景观价值的重要生态廊道。只有在规划设计实践中发现和顺应河流的自然形态和自然演变规律,在尊重和保护的基础上进行生态修复,才能真正走向人地和谐。本文以呼和浩特大黑河城区段为研究对象,分别在时间和空间维度上分析总结了大黑河河道形态演变的主要规律和自然诱因,并在此基础上提出了引导洪水对河道形态进行自我修复的生态修复方法。在整体生态系统修复策略上,提出了建立“四维一体”的生态系统修复模型。从林、堤、滩、水4个方面分别探讨了生态景观设计的过程,突出了河道生态功能和景观特色的结合。  相似文献   

19.
景观生态学与退化生态系统恢复   总被引:34,自引:5,他引:29  
退化生态系统的恢复是一项艰巨任务,它需要考虑到所要恢复的退化生态系统的结构,多样性和其动态的整体性和长期性。现在对于退化生态系统恢复研究已经要使生态学家们关注受损生态系统的理论和实际问题。退化生态系统恢复所面临的挑战是理解和利用生态演替理论来完成并加速恢复进程。恢复的主要目标是建立一个自维持的,由不同的群落或生态系统组成的能够满足不同需要如生物保护和粮食生产需要的景观。景观生态学关注于大的空间尺度的生态学问题。景观生态学研究方法可以为退化生态系统恢复实践提供指导。在解决退化生态系统的恢复问题时,景观生态学的方法在理论和实践上是有效的。景观生态学中的核心概念和其一般原理斑块形状、生态系统间相互作用、镶嵌系列等都同退化生态系统的恢复有着密切的关系。如恢复地点的选择和适当的恢复要素的空间配置。在评价退化生态系统的恢复是否取得成功,利用景观生态学也具有重要的意义。景观生态学理论如景观格局与景观异质性理论,干扰理论和尺度理论都能够指导退化生态系统的恢复实践。同样地,退化生态系统的恢复可以为景观生态学的研究提供非常恰当的实验场。寓景观生态学思想于退化生态系统恢复过程是一种新的有效途径。  相似文献   

20.
Linking Restoration and Landscape Ecology   总被引:20,自引:0,他引:20  
Landscape ecology focuses on questions typically addressed over broad spatial scales. A landscape approach embraces spatial heterogeneity, consisting of a number of ecosystems and/or landscape structures of different types, as a central theme. Such studies may aid restoration efforts in a variety of ways, including (1) provision of better guidance for selecting reference sites and establishing project goals and (2) suggestions for appropriate spatial configurations of restored elements to facilitate recruitment of flora/fauna. Likewise, restoration efforts may assist landscape–level studies, given that restored habitats, possessing various patch arrangements or being established among landscapes of varying diversity and conditions of human alteration, can provide extraordinary opportunities for experimentation over a large spatial scale. Restoration studies can facilitate the rate of information gathering for expected changes in natural landscapes for which introduction of landscape elements may be relatively slow. Moreover, data collected from restoration studies can assist in validation of dynamic models of current interest in landscape ecology. We suggest that restoration and landscape ecology have an unexplored mutualistic relationship that could enhance research and application of both disciplines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号