首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MPM-2 antibody, which recognizes a mitosis-specific phosphorylated epitope, has been used to study cell-cycle-related proteins in partially synchronized cell suspension cultures and root meristem cells. Immunofluorescence revealed that the epitope recognized by MPM-2 is located in the nucleus in interphase cells. In mitotic cells, MPM-2 labels the prophase nucleus, the spindle and some cytoplasmic components. The relative amount of the epitope changes significantly during the cell cycle. Labelling is lowest in G1 and S-phase cells and increases 2–3-fold during G2. Prophase and metaphase show four to five times the labelling of G1 cells. Labelling decreases rapidly after metaphase and is at a very low level by telophase. One- (1-D) and two-dimensional (2-D) immunoblots showed that MPM-2 labels a family of phosphorylated proteins. The labelling shows significant cell cycle dependence. Subfractionation shows at least one of these proteins is a component of the detergent-insoluble cytoskeleton cell fraction. This component is resolved on 2-D immunoblots to two to three spots of slightly different isoelectric point, possibly charge isomers, at a relative molecular mass of approximately 65 kDa. The same spots are labelled by IFA, an antibody against intermediate filament proteins. Another three of the spots at lower relative molecular mass are labelled on 2-D immunoblots of the nuclear matrix fraction.  相似文献   

2.
Pavla Binarova  P. Rennie  L. Fowke 《Protoplasma》1994,180(3-4):106-117
Summary The localization in higher plant cells of phosphorylated proteins recognized by the monoclonal antibody MPM-2 was investigated, with particular attention to putative microtubule organizing centres (MTOCs). Immunofluorescence and immunogold electron microscopy showed that MPM-2 did not localize with most putative MTOCs in cells and protoplasts of the gymnospermPicea glauca and in cells of the angiospermVicia faba. The distribution of phosphoproteins detected by MPM-2 was similar during mitosis in both species. At late interphase and early prophase MPM-2 preferentially labelled nucleoli and the region around the condensing chromosomes but not the cytoplasm. General labelling of the cytoplasm followed dissolution of the nuclear envelope and by prometaphase centromeres stained strongly. At metaphase and very early anaphase kinetochores stained strongly by immunofluorescence but only weakly using immunogold; spindle microtubules (MTs) showed little staining. Kinetochore staining disappeared during anaphase and by telophase centromeres and loose regions of chromatin in reforming nuclei were labelled. Treatment with the anti-microtubular drug amiprophosmethyl (APM) showed that the phosphorylation/dephosphorylation cycle detected by MPM-2 proceeded independently of the mitotic spindle. Staining of centromeres/kinetochores with MPM-2 suggests that phosphorylation and dephosphorylation of this region of mitotic chromosomes may be involved in chromosome organization, chromatid separation and MT nucleation and/or attachment.Abbreviations APM amiprophos-methyl - DAPI 4,6-diamidino-2-phenylindole - EGTA ethylene glycol-bis(-aminoethyl ether) - FITC fluorescein isothiocyanate - MT microtubule - MTOC microtubule organizing centre - MtSB microtubule stabilizing buffer - PBS phosphate buffered saline - PBSB phosphate buffered saline with bovine serum albumin - PIPES piperazine-N,N-bis (2-ethanesulfonic acid) - PPB preprophase band - SPB spindle pole body - TRITC tetramethylrhodamine isothiocyanate  相似文献   

3.
Threonine phosphorylation is associated with mitosis in HeLa cells   总被引:3,自引:0,他引:3  
J Y Zhao  J Kuang  R C Adlakha  P N Rao 《FEBS letters》1989,249(2):389-395
Phosphorylation and dephosphorylation of proteins play an important role in the regulation of mitosis and meiosis. In our previous studies we have described mitosis-specific monoclonal antibody MPM-2 that recognizes a family of phosphopeptides in mitotic cells but not in interphase cells. These peptides are synthesized in S phase but modified by phosphorylation during G2/mitosis transition. The epitope for the MPM-2 is a phosphorylated site. In this study, we attempted to determine which amino acids are phosphorylated during the G2-mitosis (M) transition. We raised a polyclonal antibody against one of the antigens recognized by MPM-2, i.e. a protein of 55 kDa, that is present in interphase cells but modified by phosphorylation during mitosis. This antibody recognizes the p55 protein in both interphase and mitosis while it is recognized by the monoclonal antibody MPM-2 only in mitotic cells. Phosphoamino acid analysis of protein p55 from 32P-labeled S-phase and M-phase HeLa cell extracts after immunoprecipitation with anti-p55 antibodies revealed that threonine was extensively phosphorylated in p55 during G2-M but not in S phase, whereas serine was phosphorylated during both S and M phases. Tyrosine was not phosphorylated. Identical results were obtained when antigens recognized by MPM-2 were subjected to similar analysis. As cells completed mitosis and entered G1 phase phosphothreonine was completely dephosphorylated whereas phosphoserine was not. These results suggest that phosphorylation of threonine might be specific to some of the mitosis-related events.  相似文献   

4.
A group of antigens related by their reactivity with monoclonal antibodies MPM-1 and MPM-2 appear as cells enter mitosis. These antibodies bind to a phosphorylated epitope on certain proteins, and therefore the antigens are presumed to be a group of phosphoproteins. A subset of these proteins has been shown previously to be components of mitotic microtubule organizing centers in PtK1 cells. We present here evidence that the mitosis-specific appearance of these phosphoproteins is a phenomenon common to all eukaryotic cells. The MPM reactive phosphoproteins were localized to mitotic spindle poles regardless of whether the spindle formed in the cytoplasm after nuclear envelope breakdown (open mitosis) or within the nucleus (closed mitosis). This reactivity was not dependent upon the presence of centrioles at the spindle poles. Proteins that contained the phosphorylated epitope were not, however, restricted to mitotic cells. Cells of neuronal derivation and flagellated cells showed specific localization of MPM antibody to the microtubule network and basal bodies respectively. On immunoblots, the MPM antibody reacted with brain MAP-1 among a number of other phosphoproteins. The identification of microtubule-associated protein (MAP)-1 correlates with the localization of the antibody to microtubules of neuroblastoma cells. These results suggest, that different phosphoprotein molecules detected by the MPM antibody may be specific for different mitotic microtubule organizing centers, basal bodies, and other specialized cytoskeletal structures; and the presence of a related phosphorylated domain on these proteins may be important for their proper function and/or interaction with microtubules.  相似文献   

5.
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes recognized by the monoclonal antibody MPM-2, are phosphorylated during M-phase induction. Our previous studies suggested that certain MPM-2 antigens are involved in the appearance of maturation-promoting factor (MPF) activity. Because the central mitotic regulator cdc2 kinase has been shown to exhibit MPF activity, we explored the possibility that certain MPM-2 antigens are regulators of cdc2 kinase. We found that MPM-2 binding of its antigens would inhibit the autoamplification of cdc2 kinase in Xenopus oocytes and interfere with cyclin-activation of cdc2 kinase in Xenopus interphase egg extract. Immunodepletion of MPM-2 antigens from cyclin-induced M-phase egg extract caused the inactivation of cdc2 kinase, which was accompanied by an inhibitory phosphorylation of p34cdc2 on Thr 14 and Tyr 15, indicating that at least one MPM-2 antigen is a positive regulator of p34cdc2 dephosphorylation. We then showed that cdc25 from M-phase arrested egg extract is an MPM-2 antigen. These results suggest that phosphorylation of the epitope recognized by MPM-2 may be a crucial event in the activation of cdc25 and that the kinase(s) that phosphorylates this MPM-2 epitope may be an important regulator of cdc2 kinase activation.  相似文献   

6.
The role of microtubules and endomembranes in pollen wall pattern formation in Vigna vexillata L. was examined using fluorescence laser scanning confocal microscopy. Indirect immunofluorescence using anti--tubulin antibodies revealed that the arrangement of the cortical microtubular cytoskeleton in microspores resembled the reciprocal of the reticulate ektexine ornamentations of mature V. vexillata pollen. Patches of microtubules in cortical cytoplasm corresponded in location with the lumina of the exine reticulum and with apertural sites. Microtubules were absent from cytoplasm under muri (ridges) of the exine reticulum. Labeling of microspores during the mid-tetrad stage with the endomembrane-specific fluorochrome DiOC6 produced a pattern similar to that of the microtubules; i.e., DiOC6 staining was localized in cytoplasm underlying lumina and absent from cortical cytoplasm underlying sites of muri. This report represents the first observation of congruence of the pattern of occurrence of any subcellular organelles with exine pattern and, in particular, the congruence of both microtubules and endomembranes in cortical cytoplasm with the lumina of the reticulate exine.  相似文献   

7.
Elevation of the culture temperature to 32°C for approximately 8 h can irreversibly change the developmental fate of isolatedBrassica napus microspores from pollen development to embryogenesis. This stress treatment was accompanied by de-novo synthesis of a number of heat-shock proteins (HSPs) of the 70-kDa class: HSP68 and HSP70. A detailed biochemical and cytological analysis was performed of the HSP68 and HSP70 isoforms. Eight HSP68 isoforms, one of which was induced three fold by the stress treatment, were detected on two-dimensional immunoblots. Immunocytochemistry revealed a co-distribution of HSP68 with DNA-containing organelles, presumably mitochondria. Six HSP70 isoforms were detected, one of which was induced six fold under embryogenic culture conditions. During normal pollen development, HSP70 was localized in the nucleoplasm during the S phase of the cell cycle, and predominantly in the cytoplasm during the remainder. Induction of embryogenic development in late unicellular microspores was accompanied by an intense anti-HSP70 labeling of the nucleoplasm during an elongated S phase. In early bicellular pollen the nucleus of the vegetative cell, which normally does not divide and never expresses HSP70, showed intense labeling of the nucleoplasm with anti-HSP70 after 8 h of culture under embryogenic conditions. These results demonstrate a strong correlation between the phase of the cell cycle, the nuclear localization of HSP70 and the induction of embryogenesis. As temperature stress alone is responsible for the induction of embryogenic development, and causes an altered pattern of cell division, there might be a direct involvement of HSP70 in this process.Abbreviations HSP heat-shock protein - 2-D two-dimensional - DAPI 4,6-diamidino-2-phenylindole. 1-D = one-dimensional - pI isoelectric point  相似文献   

8.
Summary The microtubule cytoskeleton and cytoplasmic organization ofAllomyces macrogynus during zoosporogenesis was studied using light and electron microscopy. Indirect immunofluorescence methods revealed that the microtubule cytoskeleton progressed through three distinct stages of cytoplasmic distribution during zoospore development. During the first 10 minutes of zoosporogenesis, nuclei were strictly located in the periphery of the cytoplasm, and their associated centrosomes were positioned immediately adjacent to the plasma membrane. Microtubules emanated from centrosomes into the surrounding cytoplasm. Within 20 to 30 min after the induction of zoosporangial cleavage, nuclei migrated to new positions throughout the sporangial cytoplasm and microtubule arrays were primarily organized at and emanated from nuclear surfaces. During the final stage of zoosporogenesis, nuclear envelope-associated microtubules were not observed. Instead, primary organization of cytoplasmic microtubules returned to centrosomes (i.e., basal bodies) and flagella formation was evident. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins associated with microtubule nucleation, stained centrosome regions throughout zoosporogenesis but did not stain nuclear envelopes.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamino-2-phenylindole - dH2O deionized water - DMSO dimethyl sulfoxide - DS dilute salts solution - G/5 0.1% glucose medium - LN2 liquid nitrogen - LSCM laser scanning confocal microscopy - MTOC microtubule-organizing center - PBS phosphate buffered saline - PCM pericentriolar matrix - TEM transmission electron microscopy - VELM videoenhanced light microscopy  相似文献   

9.
The monoclonal antibody MPM-12, raised by using partially purified extract of mitotic HeLa cells as the immunogen, preferentially stains the cytoplasm of mitotic cells by indirect immunofluorescence without exhibiting any species specificity. On immunoblots, MPM-12 recognizes three bands, of 155, 88, and 68 kDa, in mitotic HeLa cell extract but only the 68-kDa band in interphase cell extract. The 68-kDa band seems to be associated with chromatin while the other two are not. All three MPM-12 reactive peptides are phosphorylated, and the phosphorylation seems to be required for MPM-12 reactivity. The MPM-12 immunocomplexes exhibit autophosphorylating and histone H1 kinase activity.  相似文献   

10.
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes (the MPM-2 epitope), are associated with various mitotically important structures. The central mitotic regulator cdc2 kinase has been proposed to induce M-phase by phosphorylating many proteins which might include the MPM-2 antigens. To clarify the relationship of cdc2 kinase and the MPM-2 antigens, we developed an in vitro assay that enabled us to specifically detect the kinases that phosphorylate the MPM-2 epitope (ME kinases) in crude cell extracts. Two different ME kinase activities were identified in unfertilized Xenopus eggs, neither of which was cdc2 kinase, but both appeared to be activated by the introduction of cdc2 kinase into oocytes or oocyte extract. The two ME kinases differed in molecular size, substrate specificity, peptide components, and MPM-2 reactivity. The larger one, ME kinase-H, phosphorylated several MPM-2 antigens, while the smaller one, ME kinase-L, phosphorylated mainly one. We purified ME kinase-L to near homogeneity by sequential chromatography and showed that it has the characteristics of the 42-kD microtubule-associated protein (MAP) kinase. Our results support the previous finding that MAP kinase is activated during Xenopus oocyte maturation and suggest that MAP kinase may contribute to oocyte maturation induction by phosphorylating one subtype of MPM-2 epitope.  相似文献   

11.
DNA topoisomerase II alpha is required for chromatin condensation during prophase. This process is temporally linked with the appearance of mitosis-specific phosphorylation sites on topoisomerase IIalpha including one recognized by the MPM-2 monoclonal antibody. We now report that the ability of mitotic extracts to create the MPM-2 epitope on human topoisomerase II alpha is abolished by immunodepletion of protein kinase CK2. Furthermore, the MPM-2 phosphoepitope on topoisomerase II alpha can be generated by purified CK2. Phosphorylation of C-truncated topoisomerase II alpha mutant proteins conclusively shows, that the MPM-2 epitope is present in the last 163 amino acids. Use of peptides containing all conserved CK2 consensus sites in this region indicates that only the peptide containing Arg-1466 to Ala-1485 is able to compete with topoisomerase II alpha for binding of the MPM-2 antibody. Replacement of Ser-1469 with Ala abolishes the ability of the phosphorylated peptide to bind to the MPM-2 antibody while a peptide containing phosphorylated Ser-1469 binds tightly. Surprisingly, the MPM-2 phosphoepitope influences neither the catalytic activity of topoisomerase II alpha nor its ability to form molecular complexes with CK2 in vitro. In conclusion, we have identified protein kinase CK2 as a new MPM-2 kinase able to phosphorylate an important mitotic protein, topoisomerase II alpha, on Ser-1469.  相似文献   

12.
Kenji Ueda  Ichiro Tanaka 《Planta》1994,192(3):446-452
A method has been developed for the efficient isolation of generative and vegetative nuclei from the generative and vegetative cells, respectively, of pollen grains of Lilium longiflorum Thunb. First, large numbers of pollen protoplasts were isolated enzymatically from nearly mature pollen grains. After the protoplasts had been gently disrupted by a mechanical method, the generative cells could be separated from the other pollen contents, which included vegetative nuclei. The generative nuclei were isolated by suspending the purified generative cells in a buffer that contained a non-ionic deter gent. The isolated generative nuclei, like those within pollen grains, had highly condensed chromatin and the isolated material was without contamination by vegetative nuclei. When basic proteins, extracted from the preparation of generative nuclei by treatment with 0.4 N H2SO4, were compared with those from preparations of somatic and vegetative nuclei by two-dimensional gel electrophoresis, it was revealed that at least five proteins with apparent molecular masses of 35, 33, 22.5, 21 and 18.5 kDa (p35, p33, p22.5, p21 and p18.5), respectively, were specific for, or highly concentrated in, the generative nuclei. An examination of solubility in 5% perchloric acid and the mobility during electrophoresis indicated that two of these proteins (p35 and p33) resembled H1 histones while the three other proteins (p22.5, p21 and p18.5) resembled core histones. It is likely that these basic nuclear proteins are related to the condensation of chromatin or to the differentiation of male gametes in flowering plants, as is the case for analogous proteins present during spermatogenesis in animals.Abbreviations DAPI 4'6-diamidino-2-phenylindole - NIB nuclear isolation buffer This work was supported in part by Grant-inAid for Scientific Research from the Ministry of Education, Science and Culture, Japan.  相似文献   

13.
Initiation of mitosis in Aspergillus nidulans requires activation of two protein kinases, p34cdc2/cyclin B and NIMA. Forced expression of NIMA, even when p34cdc2 was inactivated, promoted chromatin condensation. NIMA may therefore directly cause mitotic chromosome condensation. However, the mitosis-promoting function of NIMA is normally under control of p34cdc2/cyclin B as the active G2 form of NIMA is hyperphosphorylated and further activated by p34cdc2/cyclin B when cells initiate mitosis. To see the p34cdc2/cyclin B dependent activation of NIMA, okadaic acid had to be added to isolation buffers to prevent dephosphorylation of NIMA during isolation. Hyperphosphorylated NIMA contained the MPM-2 epitope and, in vitro, phosphorylation of NIMA by p34cdc2/cyclin B generated the MPM-2 epitope, suggesting that NIMA is phosphorylated directly by p34cdc2/cyclin B during mitotic initiation. These two kinases, which are both essential for mitotic initiation, are therefore independently activated as protein kinases during G2. Then, to initiate mitosis, we suggest that each activates the other's mitosis-promoting functions. This ensures that cells coordinately activate p34cdc2/cyclin B and NIMA to initiate mitosis only upon completion of all interphase events. Finally, we show that NIMA is regulated through the cell cycle like cyclin B, as it accumulates during G2 and is degraded only when cells traverse mitosis.  相似文献   

14.
Summary The tubulin cytoskeleton in hyphal tip cells ofAllomyces macrogynus was detected with an -tubulin monoclonal antibody and analyzed with microscopic and immunoblot techniques. The -tubulin antibody identified a 52 kilodalton polypeptide band on immunoblots. Immunfluorescence data were collected from formaldehyde-and cryofixed hyphae. Both methods provided similar images of tubulin localization. However, cryofixation yielded more consistent labeling and did not require detergent extraction or cell-wall lytic treatments. Tubulin was primarily localized as microtubules observed in the peripheral and central cytoplasmic regions and in mitotic spindles. Cytoplasmic microtubules were oriented parallel to the cells' longitudinal axis, with central microtubules more often varied in their alignment, and emanated from a region in the hyphal apex resulting in an apical zone of bright fluorescence. A thin layer of microtubules appearing as bands of fluorescence encircled many nuclei. Discrete spots of fluorescence were also associated with nuclei. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins that may be involved in the regulation of microtubule nucleation, stained centrosomes but not apical regions of hyphae. Nocodazole was used to depolymerize the microtubule network and reveal its regions of origin. A hocodazole concentration of 0.01 g/ ml (3.3× 10–8M) provided a 70 to 75% inhibition of hyphal tip growth and was used throughout this study. The number of cells having an apical zone of fluorescence declined by 15 min of exposure. This zone was present in only a few cells after 60 min. After 30 min, the central cytoplasm consisted of small microtubule fragments and nuclear-associated spots. A small number of peripheral microtubules and nuclear-associated spots persisted throughout nocodazole treatments. Spindle microtubules were restored by 30 min after removal of nocodazole. This was followed by the reappearance of the apical zone of fluorescence and then by central and peripheral cytoplasmic microtubules. Apical fluorescence coincided with the presence of a Spitzenkörper. The results suggest that the Spitzenkörper and centrosome function as centers of microtubule nucleation and organization during hyphal tip growth in this fungus.Abbreviations BSA bovine serum albumin - DAPI 4,6-diamidino-2-phenylindole - DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - IB incubation buffer - LN2 liquid nitrogen - LSCM laser scanning confocal microscopy - MTOCs microtubule-organizing centers - PBS phosphate buffered saline - PIPES 1,4-piperazinedietha-nesulfonic acid - PFB PIPES fixation buffer - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - SPB spindle pole body - TEM transmission electron microscopy - YpSs yeast extract-inorganic phosphate-soluble starch  相似文献   

15.
Systematic identification of phosphoproteins is essential for understanding cellular signalling pathways since phosphorylation plays important roles in cellular regulation. Monoclonal antibody MPM-2 recognizes a discrete set of mitosis-specific phosphoproteins and constitutes a specific tool to investigate the significance of phosphorylation in cell cycle. However, due to the difficulties in identifying antigens revealed on immunoblot membrane, only minority of MPM-2 antigens have been identified. Here we originated proteomics approaches for large-scale identification of MPM-2 phosphoproteins. Mitotic extracts were run on several two-dimensional gel electrophoresis (2D) in parallel, and stained by Coomassie Blue. Each individual spot on one of the gels was excised, and proteins in it were further resolved by regular SDS-electrophoresis and blotted on membrane for MPM-2 stain. Counterparts of the positive proteins were selected on another parallel 2D gel and identified by mass-spectrometry. Using this strategy, 100 spots were excised from Coomassie-stained 2D gel and screened by 1D immunoblots for MPM-2 reactivity, and 22 proteins containing potential MPM-2 epitope were identified in addition to a known MPM-2 antigen, laminin-binding protein. These results were further validated by immunofluorescence, co-immunoprecipitation and in vitro phosphorylation assay. The identification of an unprecedented number of potential MPM-2 phosphoprotein antigens gives new insight into the range of proteins involved in the regulation of the early stages of cell division. Meanwhile, this strategy could be used wherever unknown antigens are explored, especially for antibodies that can recognize more than one antigen.  相似文献   

16.
The gametophytic two-locus self-incompatibility (SI) system in rye was investigated in view of a possible involvement of protein phosphorylation and Ca2+ as constituents of a signal transduction mechanism. Phosphorylation kinetics in pollen grains was found to be significantly different after in vitro treatment of pollen with either cross or self stigma proteins, with a pronounced phosphorylation activity in self-treated pollen grains. Loss of SI in self-compatible (SC) mutants was associated with a significantly decreased basic phosphorylation activity in untreated pollen grains as compared to SI genotypes. Separation of phosphorylated pollen proteins by SDS-PAGE reveals four major proteins in the MW range of 43–82 kDa which were differently phosphorylated in SI vs SC genotypes as well as in cross vs self-treated pollen grains. Application of different protein kinase inhibitors and the Ca2+ antagonists verapamil and La3+ to isolated stigmas resulted in an inhibition of the SI response in in vitro self-pollination. The role of protein kinases and Ca2+ as constituents of a putative SI-specific signal transduction mechanism is discussed.  相似文献   

17.
Previous work suggests that changes in the phosphorylation state of some centrosomal proteins regulate centrosomal activity. The hypothesis that changes in the phosphorylation state of one or more basal body microtubule organizing centre (MTOC) components regulate its ability to nucleate cilia assembly in Tetrahymena thermophila was tested. The MPM-2 antibody, which recognizes phosphorylated epitopes in MTOCs in a variety of organisms, was used to probe immunoblots of cytoskeletal frameworks prepared from starved Tetrahymena, from starved deciliated Tetrahymena, and from a starved deciliated mutant Tetrahymena which failed to initiate ciliogenesis following deciliation. The MPM-2 antibody recognized an identical array of proteins in all blots. These results suggest that, unlike centrosomes, basal body MTOC activity is not regulated by changes in the phosphorylation state of component proteins.  相似文献   

18.
Culture temperature determines the developmental fate of isolated microspores from Brassica napus L. At 18°C, tricellular pollen develops, whereas culture at 32°C for 8 h leads to the quantitative and synchronous induction of embryogenesis, and ultimately to the formation of embryos. We investigated the changes in protein synthesis that are associated with this 8-h inductive period by using in-situ [35S]methionine labeling, followed by two-dimensional (2-D) gel electrophoretic analysis of the radiolabeled proteins. Qualitative and quantitative computer analyses of 2-D [35S]methionine protein patterns showed six polypeptides specifically labeled under embryogenic culture conditions. Eighteen polypeptides incorporated [35S]methionine at a statistically significant higher rate under embryogenic culture conditions (32°C) than in the controls (18°C), whereas one protein was preferentially labeled under non-embryogenic culture conditions (18°C). These results indicate that only a limited number of proteins detectable in the 2-D gels of microspore extracts are associated with the early induction of embryogenesis. The reproducible identification of the differentially radiolabeled proteins in the 2-D gels allow the sequencing of representative peptides and the isolation of the corresponding cDNAs. This may lead to the identification and characterization of proteins associated with the very first stages of plant embryogenesis.Abbreviations 2-D two-dimensional We would like to thank Dr. H. Van Steeg (Rijks Instituut voor Milieubeheer (RIVM), Bilthoven, The Netherlands) for use of the PhosphorImager apparatus. This research was carried out as part of the EC-Bridge project Regulation of the inductive phase of microspore embryogenesis and EC-Science project The role of mitotic and cytoskeletal genes in the induction of plant cell division.  相似文献   

19.
Summary To determine whether phenylalanine ammonia-lyase (EC 4.3.1.5) is involved in the maturation of microspores to fertile pollen, anthers of a fertile strain of broccoli (Brassica oleracea L.) were studied in a comparison with anthers of a cytoplasmic male sterile strain. In the normal fertile strain, immature anthers of about 2 mm in length exhibited higher phenylalanine ammonia-lyase activity than mature anthers or those shorter than 2 mm. The 2-mm-long anthers corresponded to the mononucleate stage, just after release of the microspores during pollen development. Immunohistochemical localization of phenylalanine ammonia-lyase in the anthers indicated that the protein was present predominantly in the tapetal cells. The immature anthers of cytoplasmic male sterile broccoli had a lower phenylalanine ammonia-lyase activity than those of the normal fertile strain. The level of phenylalanine ammonia-lyase activity in the immature anthers was positively correlated with the number of fertile pollen grains at the flowering stage in both strains. It seems possible, therefore, that phenylpropanoid metabolism, which involves phenylalanine ammonia-lyase, may play an important role in the maturation of microspores in flowering plants.Abbreviations CHS chalcone synthase - CMS cytoplasmic male sterility - DAPI 4, 6-diamidmo-2-phenylindole dihydrochloride - PAL L-phenylalanine ammonia-lyase  相似文献   

20.
Summary Changes in the number and distribution of mitochondria in microspores and pollen grains during male gametogenesis inPharbitis nil were examined with Technovit sections stained with 3,3-dihexyloxacarbocyanine iodide. The number of mitochondria per microspore or pollen grain ofP. nil increased constantly and dramatically during male gametogenesis. During this process, mitochondria exhibited characteristic localizations: subpopulations of mitochondria covered the surface of the microspore and vegetative nuclei before and again just after postmeiotic mitosis I (9 and 5 days before flowering, respectively). The mitochondria also surrounded the generative nucleus 2 days after postmeiotic mitosis I (5 days before flowering), although the density of mitochondria on the nuclear surface was lower. Electron microscopy showed that the mitochondria were about 30 nm from the nuclear envelope and that each mitochondrion was located near a nuclear pore. The characteristic localization of mitochondria inP. nil pollen may serve as a model to analyze the mechanisms that control mitochondrial positioning within a cell and interactions between mitochondria and nuclei.Abbreviations DAPI 4,6-diamidino-2-phenylindole - DiOC6 3,3-dihexyloxacarbocyanine iodide - PM I postmeiotic mitosis I  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号