首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two lytic enzymes (enzyme I and enzyme II) that lysed Micrococcus lysodeikticus were isolated from the crude extract of Polysphondylium pallidum myxamoebae grown in the presence of Klebsiella aerogenes by precipitation with protamine sulfate and by chromatography on DEAE-Sepharose CL-6B. Enzyme I was further purified by gel filtration on a Superose12 column, and enzyme II by chromatography on a MonoQ HR 5/5 column and gel filtration on a Superose12 column. Enzyme I was a basic protein, while enzyme II was acidic. The molecular weights of enzyme I and II were about 14,000 and 22,000, respectively by SDS-polyacrylamide gel electrophoresis. Optimum pHs for the activity were 5.0 for enzyme I and between 3.5 and 4.0 for enzyme II. The maximum activity of enzyme I and II was obtained at 65°C and 45°C to 55°C and at ionic strength of 0.0075 to 0.03 and 0.06, respectively. Both enzymes cleaved the glycosidic bond of β(1,4)-N-acetylmuramyl-acetylglucosamine of the cell wall peptidoglycan of Micrococcus lysodeikticus. These results indicate that the two lytic enzymes of Polysphondylium pallidum myxamoebae are N-acetylmuramidases.  相似文献   

2.
Two aminopeptidases, I and II, were found in the acidic fraction of the yeast autolysate, adsorbed on DEAE-cellose and DEAE-Sephadex A&50. Aminopeptidase I was purified as a single protein with a molecular weight of 200,000. The enzyme required Zn for its activity and hydrolyzed dipeptides, and a polypeptide (glucagon). It also hydrolyzed amides, naphthylamides and the p-nitroanilide of amino acids. The enzyme was strongly inhibited by sulfhydryl reagents. Aminopeptidase II seemed also to be a metal enzyme with a molecular weight of 34,000. The enzyme hydrolyzed the dipeptide and tetrapeptide but not leucine-p-nitroanilide.  相似文献   

3.
A DNA-relaxing enzyme was purified 5 000-fold to homogeneity from isolated chloroplasts of Pisum sativum. The enzyme consists of a single polypeptide of 112 kDa. The enzyme was able to relax negatively supercoiled DNA in the absence of ATP. It is resistant to nalidixic acid and novobiocin, and causes a unit change in the linkage number of supercoiled DNA. The enzyme shows optimum activity at 37°C with 50 mM KCl and 10 mM MgCl2. From these properties, the enzyme can be classified as a prokaryotic type I topoisomerase.Using a partiall purified pea chloroplast DNA polymerase fraction devoid of topoisomerase I activity for in vitro replication on clones containing the pea chloroplast DNA origins of replication, a 2–6-fold stimulation of replication activity was obtained when the purified topoisomerase I was added to the reaction at 70–100 mM KCl. However, when the same reaction was carried out at 125 mM KCl, which does not affect DNA polymerase activity on calf thymus DNA but is completely inhibitory for topoisomerase I activity, a 4-fold drop in activity resulted. Novobiocin, an inhibitor of topoisomerase II, was not found to inhibit the in vitro replication of chloroplast DNA.  相似文献   

4.
Purification and properties of human placental acid lipase   总被引:1,自引:0,他引:1  
Two peaks of lysosomal acid lipase activity were purified from normal human placenta. Acid lipase I, with an estimated molecular weight of 102 500, was purified 1016-fold while acid lipase II, with an estimated molecular weight of 30 600, was purified 3031-fold. The final yields of enzyme activity for acid lipase I and II were 0.9% and 2.2% respectively. The purity of the final preparations was documented by demonstration of a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Both preparations of the purified enzyme demonstrated activity towards triolein, cholesteryl oleate and the artificial substrate 4-methylumbelliferyl oleate. Examination of Km values, thermal stability, pH optima, and electrophoretic mobility revealed similar properties for the two enzyme peaks. The response of the two enzyme preparations to inhibitors was similar with both being significantly inhibited by 0.2 M NaCl, 0.2 M KCl, 5 mM HgCl2 and 5 mM p-chloromercuribenzoate. The activity of the two preparations as assayed with either triolein or cholesterol oleate was not significantly affected by the addition of bovine serum albumin. In contrast, the 4-methylumbelliferyl oleate activity of both preparations was significantly inhibitred by albumin. These findings support the hypothesis that the same enzyme or enzymes are responsible for the intralysosomal hydrolysis of triacylglycerols and cholesterol esters in human tissues.  相似文献   

5.
Methanol-utilizing bacteria, Klebsiella sp. No. 101 and Microcyclus eburneus could grow aerobically and statically on 1,2-propanediol. The authors examined the presence of enzyme activity of adenosyl-B12 dependent diol dehydratase as well as NAD dependent diol dehydroagenase. Adenosyl-B12 dependent diol dehydratase activity was not detected in these organisms, even if these grown statically.

The dehydrogenase activity was found in the extract from these methanol-utilizing bacteria cells grown on various carbon sources. The partially purified enzyme preparation from the cells of Mic. eburneus grown aerobically on 1,2-propanediol dehydrogenated 1,2-propanediol, 1,2-butanediol and 2,3-butanediol. The enzyme activity was separated into two fractions, namely enzyme I and II on DEAE-Sephadex A-25 column chromatography. The enzyme I was different from the enzyme II in the ratio of enzyme activity to 1,2-propanediol and 2,3-butanediol, heat stability, pH stability and pH optimum, and effect of 2-mercaptoethanol.  相似文献   

6.
We have previously cloned a cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Ag-EGase I) belonging to glycoside hydrolase family (GHF) 45 from the mulberry longicorn beetle, Apriona germari. We report here the gene structure, expression and enzyme activity of an additional celluase (Ag-EGase II) from A. germari and also described the gene structure of Ag-EGase I. The Ag-EGase II gene spans 1033 bp and consisted of two introns and three exons coding for 239 amino acid residues. The 2713-bp-long genomic DNA of Ag-EGase I also consisted of two introns and three exons. The Ag-EGase II showed 61% protein sequence identity to Ag-EGase I and 51% to another beetle, Phaedon cochleariae, cellulase, belonging to GHF 45. The catalytic sites of GHF 45 are conserved in Ag-EGase II. The Ag-EGase II has 14 conserved cysteine residues and three putative N-glycosylation sites. Northern blot analysis confirmed midgut-specific expression of Ag-EGase II, suggesting that the midgut is the prime site for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase II was expressed as a 36-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase II was approximately 812 U/mg of recombinant Ag-EGase II. The enzymatic properties of the purified recombinant Ag-EGase II showed the highest activity at 50 °C and pH 6.0, and were stable at 60 °C at least for 10 min.  相似文献   

7.
The lipase produced by a strain of Penicillium crustosum Thom was fractionated into three lipase components, I~III by DEAE cellulose column chromatography, and two of them, I and II were purified and obtained in crystalline form respectively, which proved homogeneous by electrophoresis and ultracentrifugal analysis. Lipase I was an ordinary lipase with molecular weight about 29,000 hydrolyzing olive oil and tributyrin favourably in almost the same degree, while II, rather, a so-called tributyrinase with M. W. about 32,000 hydrolyzing tributyrin more efficiently than olive oil. The site of the activity on olive oil in these lipase was generally sensitive to sodium desoxycholate, ethylenediamine-tetraacetate (EDTA), and p-chloromercuribenzoate (PCMB), and lipase I was converted to a lipase II by a treatment with these reagents. Also, partial degradation of I by proteinase (‘pronase’) yielded the enzyme fragment of type II. On the other hand, treatment of the enzymes with hydrogen peroxide or sodium borohydride caused the conversion of type II into I. From the observation of UV difference spectrum during incubation with sodium desoxycholate it was indicated that the situation of tryptophane residue in enzyme molecule may have a significance in the activity of lipase I on olive oil.  相似文献   

8.
Two major forms of branching enzyme from developing kernels of maize have been detected after DEAE-cellulose chromatography. Branching-enzyme I, which contained 24% of the activity based on a phosphorylase-stimulation assay, but 74% of the activity based on the branching of amylose as monitored by change in spectra of the iodine-glucan complex, eluted with the column wash and was unassociated with starch-synthase activity. Branching-enzyme II was bound to DEAE-cellulose and was coeluted with both primed and unprimed starch-synthase activities. Both fractions were further purified by chromatography on aminoalkyl-Sepharose columns. Single peaks were observed for both fractions by gel filtration on BioGel A1.5m columns and native molecular weights were estimated at 70,000–90,000 for both enzymes. Subunit molecular weights of branching-enzymes I and II were estimated by dodecyl sodium sulfate-gel electrophoresis at 89,000 and 80,000, respectively. Thus both enzymes are primarily monomeric. Branching-enzymes I and II could be distinguished by chromatography on DEAE-cellulose or 4-aminobutyl-Sepharose, and by disc-gel electrophoresis with activity staining. Branching-enyme I had a lower ratio of activity (phosphorylase stimulation-amylose branching; based on enzyme units). The ratio varied from 30–60 as compared to about 300–500 for branching-enzyme II. Likewise, branching-enzyme I had a lower Km value for amylose than branching- enzyme II, the values being 160 and 500 μg/ml, respectively. Both enzymes could introduce further branches into amylopectin, as decreases in the overall absorption and wavelength maxima of the iodine complexes were observed. Combined action of the branching enzymes and rabbit-muscle phosphorylase a (12:1 ratio based on enzyme units) resulted in similar patterns of incorporation of d-glucose into the growing α-d-glucan and the synthesis of high molecular-weight polymers. However, the α-d-glucans differed, as shown by spectra of iodine complexes and average unit-chain length. Branching-enzyine II was separated into two fractions (IIa and IIb) by chromatography on 4-aminobutyl-Sepharose. These Fractions differed only in the branching of amylopectin, fractional IIb being more active than IIa.  相似文献   

9.
Procollagen N-proteinase (EC 3.4.24.14), the enzyme that cleaves the NH2-terminal propeptides from type I procollagen, was purified over 20,000-fold with a yield of 12% from extracts of 17-day-old chick embryo tendons. The procedure involved precipitation with ammonium sulfate, adsorption on concanavalin A-Sepharose, and five additional column chromatographic steps. The purified enzyme was a neutral, Ca2+-dependent proteinase (5-10 mM) that was inhibited by metal chelators. It had a molecular mass of 500 kDa as determined by gel filtration. The enzyme contained unreduced polypeptides of 61, 120, 135, and 161 kDa that were separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The 135- and 161-kDa polypeptides were catalytically active after elution from the polyacrylamide gel. Other properties of 500-kDa enzyme are: 1) the Km for type I procollagen is 54 nM at pH 7.5 and 35 degrees C, and the kappa cat is 350 h-1; 2) the activation energy for reaction with type I procollagen is 7,100 cal mol-1; 3) the isoelectric point is 3.6; and 4) the enzyme specifically cleaves the NH2-terminal propeptides of type I and II procollagen, but not of type III procollagen. A minor form of N-proteinase with a 300-kDa mass was also purified and was found to contain a 90-kDa polypeptide as the major active polypeptide. The enzyme appeared to be a degraded form of the 500-kDa N-proteinase. The properties of the 300-kDa enzyme were similar to those observed for the 500-kDa enzyme.  相似文献   

10.
Aspergillus flavus grown in a liquid medium containing pectin as the sole carbon source produced extracellular enzymes which degraded the 1,4-α-d-glycosidic bonds of pectin. The products of degradation were characteristic of substances produced by transeliminase. Synthesis of this enzyme was repressed by the addition of sucrose, glucose, fructose and maltose. The crude enzyme was partially purified by a combination of ultrafiltration and ammonium sulfate precipitation. The partially purified enzyme was separated by molecular exclusion chromatography into three components A, B and C, with molar masses ranging from 13.2 to 64 kDa. Only fraction B exhibited enzymic activity and further fractionated by ion-exchange chromatography into four components I–IV. Among these components, only fractions I and II possessed transeliminase activity. Both fractions had an optimum activity at pH 8.5 and 35°C, and were stimulated by Ca2+, Mg2+, Na+ and K+ but inhibited by EDTA and DNP. The apparentK m for the degradation of pectin by fractions I and II were 6.2 and 8.0 g/L, respectively.  相似文献   

11.
A new type II restriction endonuclease which we designated as Bsu121I has been isolated from gram-positive bacterium Bacillus subtilis strain 121 and partially purified. The restriction endonuclease was isolated from cell extracts using step-wise purification through ammonium sulfate precipitation, followed by phosphocellulose column chromatography. SDS-PAGE profile showed denatured molecular weights (23 and 67 kDa) of the endonuclease. The partially purified enzyme restricted pBR322 DNA into two fragments of 3200 and 1700 bp. The endonuclease activity required Mg+2 as cofactor like other type II endonucleases.  相似文献   

12.
13.
14.
Enzymes I and II, which have a high soymilk-clotting activity, produced from K-295G-7 were purified by chromatographies on Sephadex G-100, CM-cellulose, hydroxylapatite, and 2nd Sephadex G-100.

The two purified enzymes were found to be homogeneous by polyacrylamide gel elec-trophoresis (PAGE) at pH 4.3. The molecular weights of enzymes I and II were 28,000 and 29,500 by SDS-PAGE, and their isoelectric points were 9.22 and 9.45, respectively. Enzymes I and II coagulated soymilk optimally at 65°C and were stable up to 45°C. Both enzymes were most active at pH 5.8, for soymilk coagulation between pH 5.8 to 6.7, and were stable with about 50 ~ 100% of the original activity from pH 5 to 10.

Each of the purified enzymes was a serine protease with an optimum pH of 9.0 for soy protein isolate (SPI) and casein digestions, because these enzymes were inhibited completely by diisopropylfluoro-phosphate (DFP).

The soymilk-clotting activity to proteolytic activity ratio of the enzyme II was 3 times higher than that of enzyme I. Enzymes I and II were more sensitive to the calcium ion concentration in soymilk than bromelain is.  相似文献   

15.
The phytopathogenic fungus Botrytis cinerea produces a set of polygalacturonases (PGs) which are involved in the enzymatic degradation of pectin during plant tissue infection. Two polygalacturonases secreted by B. cinerea in seven-day-old liquid culture were purified to apparent homogeneity by chromatography. PG I was an exopolygalacturonase of molecular weight 65 kDa and pI 8.0 and PG II was an endopolygalacturonase of 52 kDa and pI 7.8. Enzymatic activity of PG I and PG II was partially inhibited by 1 mM CaCl2, probably by calcium chelation of polygalacturonic acid, the substrate of the enzyme.  相似文献   

16.
Extracellular dextranases were extracted from a dextran-degrading microorganism, Bacteroides oralis Ig4a, which had been isolated from human dental plaque, and purified. Crude enzyme preparations obtained from a broth culture supernatant by salting out with ammonium sulfate were subjected to column chromatography on DEAE-cellulose and subsequent Bio-Gel p-100, followed by isoelectric focusing. Two kinds of enzyme preparations, Enzymes I and II, with the ability to degrade soluble dextran were obtained. The optimal pHs of Enzymes I and II were 5.5 and 6.8, and the isoelectric points were pH 4.5 and 6.5, respectively. The molecular weights of Enzymes I and II were estimated by SDS-PAGE to be 44,000 and 52,000. Both enzymes were inhibited by Pb2+ and Fe3+, but not by Ca2+, Mg2+, Zn2+, or Fe2+. Neither the presence of EDTA nor iodoacetamide had any appreciable effect on the enzyme activity. The enzyme activity was independent of any of these metal ions. Enzyme I liberated glucose, isomaltose, maltotriose and higher oligosaccharides from dextran. In contrast, Enzyme II liberated only glucose from dextran and was assumed to be an exoglycosidase. Neither of the enzymes degraded modified insoluble glucan, which is a partially oxidized mutan of S. mutans containing predominantly α-(1, 3) linkages.  相似文献   

17.
The ATP-independent type I and the ATP-dependent type II DNA topoisomerase of the yeast Saccharomyces cerevisiae have been purified to near homogeneity, and the purification procedures are reported. Both purified topoisomerases are single subunit enzymes with monomer weights of Mr = 90,000 and 150,000 for the type I and type II enzyme, respectively. Sedimentation and gel filtration data suggest that the type I enzyme is monomeric and the type II enzyme is dimeric. Similar to other purified eukaryotic topoisomerases, the yeast type I enzyme does not require a divalent cation for activity, but is stimulated 10-20-fold in the presence of 7-10 mM Mg(II) or Ca(II). Mn(II) is about 25% as efficient as Mg(II) in this stimulation but Co(II) is inhibitory. The yeast type II topoisomerase has an absolute requirement for a divalent cation: Mg(II) is the most effective, whereas Mn(II), Ca(II), or Co(II) supports the reaction to a lesser extent. The type II enzyme also requires ATP or dATP; the nonhydrolyzable ATP analogues adenylyl imidodiphosphate and adenylyl (beta,gamma-methylene)diphosphonate are potent inhibitors. Both yeast topoisomerases are completely inhibited by N-ethylmaleimide at 0.5 mM. In addition, the type II enzyme, but not the type I enzyme, is inhibited to various extents by coumermycin, ethidium, and berenil. Both topoisomerases are nuclear enzymes; no topoisomerase specific to mitochondria has been detected.  相似文献   

18.
Rabbit antisera were prepared against the purified glucoamylases I and II ofAspergillus niger. Relationships between the two enzyme forms were investigated by using the antisera in immunodiffusion and immunoinhibition experiments. Both the forms of glucoamylase gave a single continuous precipitin band demonstrating very close structural resemblance. They gave almost identical immunoprecipitation patterns and had the same equivalence points indicating that the two forms ofA. niger gluoamylases were immunologically identical. The enzyme treated with periodate was immunologically identical with the controls and had slightly less enzyme activity but showed greatly reduced stability on storage at 4‡ C.  相似文献   

19.
Copulatory plug formation in animals is a general phenomenon by which competition is reduced among rival males. In mouse, the copulatory plug formation results from the coagulation of highly viscous seminal vesicle secretion (SVS) that is rich in proteins, such as dimers of SVS I, SVS I + II + III, and SVS II. These high‐molecular‐weight complexes (HMWCs) are also reported to be the bulk of proteins in the copulatory plug of the female mouse following copulation. In addition, mouse SVS contributes to the existence of sulfhydryl oxidase (Sox), which mediates the disulfide bond formation between cysteine residues. In this study, flavin adenine dinucleotide (FAD)‐dependent Sox was purified from mouse SVS using ion exchange and high‐performance liquid chromatography. The purified enzyme was identified to be Sox, based on western blot analysis with Sox antiserum and its capability of oxidizing dithiothreitol as substrate. The pH optima and thermal stability of the enzyme were determined. Among the metal ions tested, zinc showed an inhibitory effect on Sox activity. A prosthetic group of the enzyme was identified as FAD. The Km and Vmax of the enzyme was also determined. In addition to purification and biochemical characterization of seminal vesicle Sox, the major breakthrough of this study was proving its cross‐linking activity among SVS I–III monomers to form HMWCs in SVS.  相似文献   

20.
Through the use of pilot plant equipment, transaldolase types I, II, and III (from Candida utilis) have been separated and purified. The procedure includes a time sensitive solvent fractionation below 0°C, ion exchange chromatography, and crystalization. The enzyme yield represents a 41% recovery of crystalline type III and partially purified types I and II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号