首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antigenic drift in the influenza A virus hemagglutinin (HA) is responsible for seasonal reformulation of influenza vaccines. Here, we address an important and largely overlooked issue in antigenic drift: how does the number and location of glycosylation sites affect HA evolution in man? We analyzed the glycosylation status of all full-length H1 subtype HA sequences available in the NCBI influenza database. We devised the “flow index” (FI), a simple algorithm that calculates the tendency for viruses to gain or lose consensus glycosylation sites. The FI predicts the predominance of glycosylation states among existing strains. Our analyses show that while the number of glycosylation sites in the HA globular domain does not influence the overall magnitude of variation in defined antigenic regions, variation focuses on those regions unshielded by glycosylation. This supports the conclusion that glycosylation generally shields HA from antibody-mediated neutralization, and implies that fitness costs in accommodating oligosaccharides limit virus escape via HA hyperglycosylation.  相似文献   

2.
A method of isolation of hydrophobic membrane-bound C-terminal domain of influenza virus A hemagglutinin (HA) is suggested. The method is based on the insertion of HA into octylglucoside micelles followed by pepsin or thermolysin hydrolysis. Subsequent treatment of proteolytic digests with chloroform-hexafluoroisopropanol mixture resulted in the extraction of a few hydrophobic peptides into organic phase. Mass-spectrometry (MALDI-TOF) analysis revealed that the peptides with ion masses corresponding to the anchoring C-terminal domain with or without modifications predominated in the organic solution. The data obtained confirmed our speculation on the possibility of the suggested isolation scheme following from the strong interactions of anchoring domains in compact trimeric structure of HA spikes combined with micelle protection effect. Several appropriate peptides presence in the organic phase apparently arises from the presence of a few accessible proteolytic sites in HA transmembrane region.  相似文献   

3.
Immunogenic structure of the influenza virus hemagglutinin   总被引:133,自引:0,他引:133  
We chemically synthesized 20 peptides corresponding to 75% of the HA1 molecule of the influenza virus. Antibodies to the majority (18) of these peptides were capable of reacting with the hemagglutinin molecule. These 18 peptides are not confined to the known antigenic determinants of the hemagglutinin molecule, but rather are scattered throughout its three-dimensional structure. In contrast, antibody raised to intact hemagglutinin did not react with any of the 20 peptides. Taken together these results suggest that the immunogenicity of an intact protein molecule is not the sum of the immunogenicity of its pieces.  相似文献   

4.
血凝素(Hemagglutinin,HA)是流感病毒的主要表面抗原之一,诱导机体产生中和抗体,介导病毒囊膜与靶细胞膜融合,从而启动病毒对宿主细胞的感染过程。HA蛋白以前体形式合成,需经宿主蛋白酶水解为HA1、HA2两个亚单位,并以二硫键连接,病毒才获得感染性。研究表明宿主蛋白酶的分布与流感病毒感染后的致病力和组织嗜性有直接关系。潜在的裂解酶及其抑制因子的发现为流感的防治提供了新的思路,成为干预治疗的新潜在靶点。就当前国内外关于流感病毒血凝素的结构与功能、裂解机制及其应用的研究进展进行综述。  相似文献   

5.
The fusion activity of chimeras of influenza virus hemagglutinin (HA) (from A/fpv/Rostock/34; subtype H7) with the transmembrane domain (TM) and/or cytoplasmic tail (CT) either from the nonviral, nonfusogenic T-cell surface protein CD4 or from the fusogenic Sendai virus F-protein was studied. Wild-type or chimeric HA was expressed in CV-1 cells by the transient T7-RNA-polymerase vaccinia virus expression system. Subsequently, the fusion activity of the expression products was monitored with red blood cells or ghosts as target cells. To assess the different steps of fusion, target cells were labeled with the fluorescent membrane label octadecyl rhodamine B-chloride (R18) (membrane fusion) and with the cytoplasmic fluorophores calcein (molecular weight [MW], 623; formation of small aqueous fusion pore) and tetramethylrhodamine-dextran (MW, 10,000; enlargement of fusion pore). All chimeric HA/F-proteins, as well as the chimera with the TM of CD4 and the CT of HA, were able to mediate the different steps of fusion very similarly to wild-type HA. Quite differently, chimeric proteins with the CT of CD4 were strongly impaired in mediating pore enlargement. However, membrane fusion and formation of small pores were similar to those of wild-type HA, indicating that the conformational change of the ectodomain and earlier fusion steps were not inhibited. Various properties of the CT which may affect pore enlargement are considered. We surmise that the hydrophobicity of the sequence adjacent to the transmembrane domain is important for pore dilation.  相似文献   

6.
Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.  相似文献   

7.
The kinetics of low-pH induced fusion of influenza virus with liposomes have been compared to changes in the morphology of influenza hemagglutinin (HA). At pH 4.9 and 30 degrees C, the fusion of influenza A/PR/8/34 virus with ganglioside-bearing liposomes was complete within 6 min. Virus preincubated at pH 4.9 and 30 degrees C in the absence of liposomes for 2 or 10 min retained most of its fusion activity. However, fusion activity was dramatically reduced after 30 min, and virtually abolished after a 60-min preincubation. Cryo-electron microscopy showed that the hemagglutinin spikes of virions exposed to pH 4.9 at 30 degrees C for 10 min underwent no major morphological changes. After 30 min, however, the spike morphology changed dramatically, and further changes occurred for up to 60 min after exposure to low pH. Because the morphological changes occur at a rate corresponding to the loss of fusion activity, and because these changes are much slower than the rate at which fusion occurs, we conclude that the morphologically altered HA is inactive with respect to fusion-promoting activity. Molecular modeling studies indicate that the formation of an extended coiled coil within the HA trimer, as proposed for HA at low pH, requires a major conformational change in HA, and that the morphological changes we observe are consistent with the formation of an extended coiled coil. These results imply that the crystallographically determined low-pH form of HA does occur in the intact virus, but that this form is not a precursor of viral fusion. It is speculated that the motion to the low-pH form may be responsible for the membrane destabilization leading to fusion.  相似文献   

8.
Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus.  相似文献   

9.
T Zurcher  G Luo    P Palese 《Journal of virology》1994,68(9):5748-5754
The carboxy terminus of the hemagglutinin (HA) of influenza A viruses contains three cysteine residues which are highly conserved among HA subtypes. It has previously been shown for the H2, H3, and H7 subtypes of HA that these cysteine residues are modified by the covalent attachment of palmitic acid. In order to study the role of the acylated cysteines in the formation of infectious influenza viruses, we introduced mutations into the HA of influenza A/WSN/33 virus (H1 subtype) by reverse-genetics techniques. We found that the cysteine at position 563 of the cytoplasmic tail is required for infectious-particle formation. The cysteine at position 560 can be changed to alanine or tyrosine to yield virus strains that are attenuated in cell cultures. The change from cysteine at position 553 to serine or alanine does not significantly alter the phenotype of the virus. The requirement for a cysteine at position 563 suggests a functional role for palmitylation of the cytoplasmic tail. This interpretation is further supported by experiments in which two or more of the cysteine residues were mutated, eliminating potential palmitylation sites. None of these double or triple mutations resulted in infectious virus. Selection of revertants of the attenuated cysteine-to-tyrosine mutant (mutation at position 560) always resulted in reversion to cysteine rather than to other amino acids. Although our data indicate a biological role for the conserved cysteine residues in the cytoplasmic tail of the HA of influenza viruses, we cannot exclude the possibility that structural constraints in the cytoplasmic tail of the HA--rather than altered palmitylation--are the determining factors for infectious-particle formation.  相似文献   

10.
An influenza virus hemagglutinin gene, H7, has been expressed in a replication-competent Schmidt-Ruppin Rous sarcoma virus-derived vector. This virus, P1/H7, expressed a glycosylated precursor of the H7 protein which was processed to a mature form and transported to the cell surface. The expressed H7 glycoprotein could not be detected in P1/H7 virus particles. A P1/H7 stock which expressed 5 to 10% of the level of H7 observed in influenza virus-infected chicken embryo fibroblasts was used to immunize 1-month-old chickens. This immunization resulted in low or undetectable levels of hemagglutination-inhibiting and neutralizing antibody. Despite the low serum response, challenge with a highly pathogenic H7N7 virus revealed complete protection against lethal infection.  相似文献   

11.
Mutations have been introduced into the cloned DNA sequences coding for influenza virus hemagglutinin (HA), and the resulting mutant genes have been expressed in simian cells by the use of SV40-HA recombinant viral vectors. In this study we analyzed the effect of specific alterations in the cytoplasmic domain of the HA molecule on its rate of biosynthesis and transport, cellular localization, and biological activity. Several of the mutants displayed abnormalities in the pathway of transport from the endoplasmic reticulum to the cell surface. One mutant HA remained within the endoplasmic reticulum; others were delayed in reaching the Golgi apparatus after core glycosylation had been completed in the endoplasmic reticulum, but then progressed at a normal rate from the Golgi apparatus to the cell surface; another was delayed in transport from the Golgi apparatus to the plasma membrane. However, two mutants were indistinguishable from wild-type HA in their rate of movement from the endoplasmic reticulum through the Golgi apparatus to the cell surface. We conclude that changes in the cytoplasmic domain can powerfully influence the rate of intracellular transport and the efficiency with which HA reaches the cell surface. Nevertheless, absolute conservation of this region of the molecule is not required for maturation and efficient expression of a biologically active HA on the surface of infected cells.  相似文献   

12.
The influenza virus hemagglutinin (HA) contains a cytoplasmic domain that consists of 10 to 11 amino acids, of which five residues have sequence identity for 10 of 13 HA subtypes. To investigate properties of these conserved residues, oligonucleotide-directed mutagenesis was performed, using an HA cDNA of influenza virus A/Udorn/72 (H3N2) to substitute the conserved cysteine residues with other residues, to delete the three C-terminal conserved residues, or to remove the entire cytoplasmic domain. The altered HAs were expressed in eukaryotic cells, and the rates of intracellular transport were examined. It was found that substitution of either conserved cysteine residue within the cytoplasmic domain did not affect the rate of intracellular transport, whereas deletion of residues within the C-terminal domain resulted in delayed cell surface expression. All the altered HAs were biologically active in hemadsorption and fusion assays. To investigate whether the wild-type HA and HAs with altered cytoplasmic tails could complement the influenza virus temperature-sensitive transport-defective HA mutant A/WSN/33 ts61S, the HA cDNAs were expressed by using a transient expression system and released virus was assayed by plaque analysis. The wild-type HA expression resulted in a release of approximately 10(3) PFU of virus per ml. Antibody neutralization of complemented virus indicated that the infectivity was due to incorporation of wild-type H3 HA into ts61S virions. Sucrose density gradient analysis of released virions showed that each of the HA cytoplasmic domain mutants was incorporated into virus particles. Virions containing HAs with substitution of the cysteine residues in the cytoplasmic domain were found to be infectious. However, no infectivity could be detected from virions containing HAs that had deletions in their cytoplasmic domains. Possible roles of the HA cytoplasmic domain in forming protein-protein interactions in virions and their involvement in the initiation of the infection process in cells are discussed.  相似文献   

13.
Fusion mutants of the influenza virus hemagglutinin glycoprotein   总被引:42,自引:0,他引:42  
The influenza virus hemagglutinin (HA) mediates viral entry into cells by a low pH induced membrane-fusion event in endosomal vesicles. Mutant viruses with altered pH dependence for both hemolysis and the HA conformational change required for fusion were selected for their ability to grow in cells treated with amantadine hydrochloride, which raises the endosomal pH. The amino acid sequence and three-dimensional location of 19 substitutions on the HA are reported. The mutations fall into two groups, one that results in the destabilization of the pH 7.0 location of the hydrophobic N-terminal HA2 peptide, and a second that results in the alteration of intersubunit contacts, suggesting a large distortion or disruption of these contacts in the "fusion-active" conformation.  相似文献   

14.
A new approach to create chimeric genes by directed exchange of oligonucleotide fragments was developed. By oligonucleotide-directed mutagenesis a few deletion mutants of the influenza virus hemagglutinin (HA) gene were obtained. These variants of HA gene contain unique restriction sites in DNA regions coding for the A and B epitopes of the HA molecule. The obtained special vectors may be used for cloning DNA fragments coding for new amino acid sequences in internal sites of the HA gene.  相似文献   

15.
A conformational change of the homotrimeric glycoprotein hemagglutinin (HA) of influenza virus mediates fusion between the viral envelope and the endosome membrane. The conformational change of the HA ectodomain is triggered by the acidic pH of the endosome lumen. An essential step of the conformational change is the formation of an extended coiled-coil motif exposing the hydrophobic fusion peptide toward the target membrane. The structures of the neutral-pH, non-fusion active conformation of the HA ectodomain and of a fragment of the ectodomain containing the coiled-coil motif are known. However, it is not known by which mechanism protonation triggers the conformational change of the stable neutral-pH conformation of the ectodomain. Here, recent studies on the stability of the HA ectodomain at neutral pH, the energetics of the conformational change toward the fusion-active state and of the unfolding of the HA ectodomain are summarised. A model for the early steps of the conformational change of the HA ectodomain is presented. The model implicates that protonation leads to a partial dissociation of the distal domains of the HA monomers that is driven by electrostatic repulsion. The opening of the ectodomain enables water to enter the ectodomain. The interaction of water with respective sequences originally shielded from contact with water drives the formation of the coiled-coil structure.  相似文献   

16.
The genome of influenza B viruses was shown by electrophoresis to consist of eight RNA segments. The fifth largest segment coded for hemagglutinin and the sixth coded for neuraminidase.  相似文献   

17.
Origin and evolution of influenza virus hemagglutinin genes   总被引:6,自引:0,他引:6  
Influenza A, B, and C viruses are the etiological agents of influenza. Hemagglutinin (HA) is the major envelope glycoprotein of influenza A and B viruses, and hemagglutinin-esterase (HE) in influenza C viruses is a protein homologous to HA. Because influenza A virus pandemics in humans appear to occur when new subtypes of HA genes are introduced from aquatic birds that are known to be the natural reservoir of the viruses, an understanding of the origin and evolution of HA genes is of particular importance. We therefore conducted a phylogenetic analysis of HA and HE genes and showed that the influenza A and B virus HA genes diverged much earlier than the divergence between different subtypes of influenza A virus HA genes. The rate of amino acid substitution for A virus HAs from duck, a natural reservoir, was estimated to be 3.19 x 10(-4) per site per year, which was slower than that for human and swine A virus HAs but similar to that for influenza B and C virus HAs (HEs). Using this substitution rate from the duck, we estimated that the divergences between different subtypes of A virus HA genes occurred from several thousand to several hundred years ago. In particular, the earliest divergence time was estimated to be about 2,000 years ago. Also, the A virus HA gene diverged from the B virus HA gene about 4,000 years ago and from the C virus HE gene about 8,000 years ago. These time estimates are much earlier than the previous ones.  相似文献   

18.
19.
The biosynthesis of influenza virus hemagglutinin (HA) and its translocation across microsomal membranes were studied in a mammalian cell-free system. All forms of HA could be cotranslationally translocated with high efficiency. However, only truncated forms of HA were translocated after protein synthesis has been terminated. The efficiency of this posttranslational translocation was dependent on the extent of the truncation. Posttranslational translocation was ribosome dependent and occurred only in the presence of a functional N-terminal signal sequence. The molecular mechanism of protein targeting and translocation across the membrane of the endoplasmic reticulum is discussed.  相似文献   

20.
Hemagglutinin (HA), a trimeric spike glycoprotein of influenza virus, mediates fusion between the viral envelope and the membrane of an endosome during virus entry. Fusion is triggered by low pH, which induces an irreversible conformational change in the protein. Several studies have indicated that intersubunit contacts along the trimer interfaces may be broken during this alteration. To determine whether HA dissociates into individual subunits as a consequence of the conformational change, we used velocity gradient sedimentation in the presence of Triton X-100. We also determined the resistance of acid-treated HA to dissociation by sodium dodecyl sulfate, a property of the HA trimer. At pH 7.0, isolated HA sedimented as a 9S trimer and gave the characteristic trimer pattern after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After acidification the HA remained trimeric irrespective of whether it was exposed to acid in intact virus particles or in solubilized form. Only when very low concentrations of HA were acidified did a fraction dissociate to dimers and monomers. In contrast, the water-soluble ectodomain fragment of HA (BHA) readily dissociated under a variety of conditions. Negative-stain electron microscopy supported the notion that HA molecules in virus particles do not dissociate upon acidification and may form larger oligomeric structures in the plane of the viral membrane. Taken together, the results suggested that it is the trimeric HA, or higher-order structures thereof, that are active in the acid-induced fusion reaction. Further, the results emphasized the role of the transmembrane anchors of HA in preventing dissociation of the trimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号