首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The antitumor effect of recombinant human tumor necrosis factor (rH-TNF) on two clones of rat fibrosarcoma with different metastatic potential to lymph nodes was examined. The colony formation of clone A, which has high metastatic potential, was completely inhibited by continuous exposure to rH-TNF at 50 U/ml. In contrast, colony formation of clone G, which has low metastatic potential, was not inhibited by high concentrations of rH-TNF (10,000 U/ml). The inhibitory effect of rH-TNF on colony formation by clone A was also observed with a 1-h exposure to rH-TNF. This effect was time and concentration dependent, as determined by the colony assay, 3H-thymidine uptake assay, and 51Cr-release assay. 3H-thymidine and 3H-uridine uptake per cell of clone A exposed to rH-TNF was not decreased. This suggests that the mechanisms of the antitumor effect of rH-TNF were not due to inhibition of DNA and RNA synthesis of tumor cells. In vivo growth and lymph node metastases of clone A inoculated i.p. to Donryu strain rats were completely suppressed by 14 consecutive i.p. injections of 105 or 106 U/kg per day of rH-TNF. On the other hand the growth of clone G was not influenced by rH-TNF administration.  相似文献   

2.
The influences of human tumor necrosis factor (TNF) (LuKII), recombinant human TNF-alpha, natural human interferon-gamma (HuIFN-gamma), recombinant HuIFN-gamma, and natural HuIFN-alpha were evaluated alone or in combination for their effects in vitro on colony formation by human bone marrow granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) progenitor cells incubated at 5% CO2 in lowered (5%) O2 tension. TNF (LuKII) and recombinant TNF-alpha caused a similar dose-dependent inhibition of colony formation from CFU-GM, BFU-E, and CFU-GEMM. Day 7 CFU-GM colonies were more sensitive than both day 14 CFU-GM colonies and day 7 CFU-GM clusters to inhibition by TNF. BFU-E colonies and CFU-GEMM colonies were least sensitive to inhibition with TNF. The suppressive effects of TNF (LuKII) and recombinant TNF-alpha were inactivated respectively with hetero-anti-human TNF (LuKII) and monoclonal anti-recombinant human TNF-alpha. The hetero-anti-TNF (LuKII) did not inactivate the suppressive effects of TNF-alpha and the monoclonal anti-recombinant TNF-alpha did not inactivate TNF (LuKII). The suppressive effects of TNF did not appear to be mediated via endogenous T lymphocytes and/or monocytes in the bone marrow preparation, and a pulse exposure of marrow cells with TNF for 60 min resulted in maximal or near maximal inhibition when compared with cells left with TNF for the full culture incubation period. A degree of species specificity was noted in that human TNF were more active against human marrow CFU-GM colonies than against mouse marrow CFU-GM colonies. Samples of bone marrow from patients with non-remission myeloid leukemia were set up in the CFU-GM assay and formed the characteristic abnormal growth pattern of large numbers of small sized clusters. These cluster-forming cells were more sensitive to inhibition by TNF than were the CFU-GM colonies and clusters grown from the bone marrow of normal donors. The sensitivity to TNF of colony formation by CFU-GM of patients with acute myelogenous leukemia in partial or complete remission was comparable with that of normal donors. When combinations of TNF and HuIFN were evaluated together, it was noted that TNF (LuKII) or recombinant TNF synergized with natural or recombinant HuIFN-gamma, but not with HuIFN-alpha, to suppress colony formation of CFU-GM, BFU-E, and CFU-GEMM from bone marrow of normal donors at concentrations that had no suppressive effects when molecules were used alone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Tumor necrosis factor-alpha/cachectin (TNF-alpha) and tumor necrosis factor-beta/lymphotoxin (TNF-beta) are inflammatory mediators with similar spectrums of cytotoxic activity against tumors in vitro and in vivo. We compared the effect of purified recombinant human TNF-alpha and TNF-beta on neutrophil adhesion molecule expression and hematopoietic growth factor production by cultured human umbilical vein endothelial cells. Endothelial cells acquired adhesive properties for neutrophils after a 4-hr incubation with as little as 5 U/ml TNF-alpha. TNF-alpha stimulated a dose-dependent increase in endothelial cell adhesiveness for neutrophils, with a maximal effect at 250 U/ml. In contrast, TNF-beta did not enhance endothelial-dependent neutrophil adherence until a concentration of 600 to 1200 U/ml was reached. Endothelial cells cultured for 24 hr with TNF-alpha, 10 to 1,000 U/ml, released hematopoietic colony-stimulating activity. TNF-beta failed to augment growth factor production by endothelial cells at any concentration tested. Inhibitor assays showed that the absence of detectable colony-stimulating activity was not due to direct inhibition of colony growth by TNF-beta or to release of hematopoietic inhibitors by the TNF-beta-stimulated endothelial cells. Purified natural TNF-beta was similar to recombinant TNF-beta in its effect on neutrophil adhesion molecule expression and growth factor production by endothelial cells. These results indicate that the two immunomodulatory proteins TNF-alpha and TNF-beta differ in their effects on a common target tissue. TNF-beta, which retains tumoricidal properties, shows fewer proinflammatory activities on cultured endothelial cells than TNF-alpha in vitro.  相似文献   

4.
In vitro exposure of murine bone marrow cells to increasing concentrations of zidovudine (AZT, 0.1-50 microM) had a concentration dependent suppressive effect on the growth of granulocyte-monocyte colony forming unit (CFU-GM) derived colonies. In our previous published study, the mechanism of AZT-induced suppression of erythroid colony forming unit (CFU-E) derived colonies was linked to a decrease in erythropoitin receptor (Epo-R) gene expression. In this study, we have observed that AZT exposure also induced a concentration dependent suppressive effect (35-90%) on GM-CSF receptor type alpha (GM-CSFR alpha) gene expression. The suppression of GM-CSFR alpha mRNA expression was specific, since AZT caused a much lower decrease (15-22%) on the IL-3 receptor type alpha (IL-3R alpha) message level, and had an insignificant effect on glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and c-myc message levels. Erythropoietin (Epo) therapy has been used for reversal of AZT induced erythroid toxicity. Exposure to increasing concentrations (10-500 U/ml) of GM-CSF was unable to override the suppressive effect of AZT on CFU-GM derived colonies, however, treatment in combination with IL-3 (10-250 U/ml) ameliorated the suppressive effects of AZT on CFU-GM and on GM-CSFR alpha and IL-3R alpha gene expression. These findings suggest a mechanism via which AZT may suppress granulocyte-monocyte specific differentiation in murine bone marrow cells. These data also suggest that a combination of GM-CSF and IL-3 may be a superior therapeutic intervention for AZT-induced neutropenia.  相似文献   

5.
Effects of unpurified murine erythropoietin and unpurified human recombinant erythropoietin on the growth of erythroid--BFU-E and granulocyte--macrophage progenitor cells--CFU--GM from the mouse bone marrow were compared using a methylcellulose culture system. Average erythropoietin titers for murine serum and supernatant human recombinant erythropoietin were 16 U/ml and 33 U/ml, respectively. The maximal stimulation was observed at 1-2 U/ml culture recombinant erythropoietin and 0.5 U/ml culture murine erythropoietin. Murine erythropoietin was more effective then human one. Murine and human recombinant erythropoietin had no significant effect on the number of CFU-GM colonies. But human recombinant erythropoietin could be preferentially used when studying the mechanism of erythropoiesis in man and animals because there were erythropoiesis inhibitors in mouse serum.  相似文献   

6.
The in vitro effect of human recombinant interferon alpha (IFN) alone and in combination were studied on granulomonocytic colony forming units (CFU-GM) from the peripheral blood of 10 Ph 1+ chronic myeloid leukemia (CML) patients and from the marrow of 5 normal or non-leukemic subjects. alpha- and gamma-IFN alone determined a slight inhibition on colony growth with a preferential effect on "pure" macrophagic colonies. At maximum concentration (10(4) U/ml) leukemic colony inhibition was 46 +/- 34% for alpha IFN and 43 +/- 19% for gamma IFN. Culture growth with alpha + gamma IFN in combination were significantly inhibited (up to 96 +/- 4%) with a concentration-related effect. Similar results were obtained with normal CFU-GM. The synergism that was found in vitro is probably relevant for the in vivo therapeutic effects of these compounds in CML and suggest that the combination is worth testing in vivo.  相似文献   

7.
We examined the effects of recombinant human tumor necrosis factor (rhTNF) on normal human and murine granulocyte-macrophage (CFU-gm) and erythroid (CFU-e, BFU-e) progenitor cells. We suppressed in vitro colony formation by human marrow CFU-gm, CFU-e and BFU-e or peripheral blood BFU-e by adding rhTNF to the culture in a dose-related manner. A half-maximal inhibition was observed with 1-10 ng/ml. Leukemic cell line K562 cells were found to be sensitive to rhTNF in the clonogenic colony assay. However, the clonal growth of murine marrow CFU-e and BFU-e colonies was less than 50% inhibited and CFU-gm growth was unaffected even at a concentration of 1,000 ng/ml. We observed slight to moderate inhibition after 24 h pulse exposure of both human and murine-committed progenitors to rhTNF prior to the culture. Intravenous injection of 1 mg/kg of rhTNF caused a marked decrease in marrow erythroid progenitors and consequently caused anemia in the mice. Our data indicate that rhTNF has a suppressive effect on normal human and murine hemopoietic colony formation in vitro and murine erythropoiesis in vivo.  相似文献   

8.
Summary An IgG monoclonal antibody against recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), designated HGMI, was produced by fusion of immune mouse splenocytes with HAT-sensitive murine myeloma cells. A sandwich enzyme-linked immunosorbent assay (ELISA) for measurement of human GM-CSF was developed using this HGMI and a polyclonal antibody against GM-CSF raised in a rabbit. GM-CSF in culture supernatants of phytohemagglutinin (PHA)- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells (PBMC) were measured by this ELISA system and the conventional CFU-GM colony formation method. The data indicated that the ELISA was highly efficient and sensitive for the detection of as little as 50 pg/ml recombinant GM-CSF. The CFU-GM colony assay may be influenced by other cytokines which can enhance or suppress colony formation, and ELISA for GM-CSF is more useful for kinetic studies of precise levels of production from PBMC.  相似文献   

9.
Circulating mononuclear cells from a patient developing severe aplastic anemia during the course of non-A, non-B hepatitis were found to be virtually entirely composed of in vivo activated suppressor T cells (Ia+T8+). These cells were used to establish a new permanent cell line, termed SMAA, by using phytohemagglutinin, Ebstein-Barr virus-transformed irradiated B cells, allogeneic irradiated peripheral blood mononuclear cells, and recombinant interleukin 2 to investigate the relationship of aplastic anemia-derived circulating T cells to bone marrow failure. SMAA cells, now in continuous culture for more than 9 mo, were shown to inhibit proliferation of purified myeloid progenitors and their differentiation into early and late appearing neutrophil and eosinophil colonies by 90%, whereas monocyte colonies were much less affected. Similarly, growth of erythroid colonies and bursts was almost completely inhibited, as was anti-mu-induced B cell proliferation and lectin-induced T cell proliferation. This inhibition of hematopoiesis was mediated by the release of a soluble factor that was sensitive to acid (pH 2), heat (56 degrees C), and trypsin. Monoclonal and polyclonal antibodies to interferon-gamma could abrogate the inhibitory effects of SMAA supernatant, but more than 10(4) neutralizing U/ml had to be added. The effects of SMAA could be duplicated by adding 10(4) U/ml of purified recombinant interferon-gamma to colony and proliferation assays. The concentration of interferon-gamma in SMAA supernatant was estimated to be greater than 3 X 10(3) National Institutes of Health reference U/ml by immunoradiometric assay. These results demonstrate that some patients with aplastic anemia have circulating T cells that are capable of prolonged in vitro secretion of interferon-gamma causing severe inhibition of in vitro hematopoiesis, and these cells can be expanded into permanent lines for studies on their regulatory properties.  相似文献   

10.
Effects of recombinant human interferon alpha (HuIFN-alpha) on human megakaryocyte (CFU-MK) and fibroblast (CFU-F) colony-forming cell growth were studied. Concentration-dependent inhibition of both CFU-MK and CFU-F by HuIFN-alpha was demonstrated. Statistically significant suppression of both CFU-MK and CFU-F was seen at a HuIFN-alpha concentration of 1000 U/ml or greater. No significant difference was found between HuIFN-alpha treated cultures and controls for the distribution of CFU-MK types and for the size and cell morphology of CFU-F. When a concentration of 1000 u/ml HuIFN-alpha was added at varying time points during the marrow cultures, decreased numbers of megakaryocyte and fibroblast colonies only appeared at the early days of cultures. When bone marrow cells were incubated with HuIFN-alpha for different periods of time prior to initiation of cultures, a reduction of megakaryocyte colony formation also occurred. These studies demonstrate a suppressive effect of HuIFN-alpha on human CFU-MK and CFU-F growth. This effect seems to occur at the initial stages of CFU-MK and CFU-F development.  相似文献   

11.
12.
Colonies comprised exclusively of neutrophil granulocytes have been obtained by growing mouse bone marrow cells in nutrient semisolid agar cultures. A stimulator of predominantly granulocyte colony formation was present in the breakthrough fraction of preparations of colony-stimulating activity separated on DEAE-Sephadex A. The source of colony-stimulating activity was concentrated conditioned medium of a murine myelomonocytic cell line (WEHI-3), which unfractionated stimulated the growth of colonies of granulocytes, macrophages, megakaryocytes, as well as mixed colony types. After stepwise column chromatography of the conditioned medium, the breakthrough fraction was shown to stimulate predominantly granulocyte colony formation, and the fraction eluted with 1 M NaCl was found to induce primarily macrophage colony growth. Colony morphology was independent of the concentration of eluate used. The morphology of colonies varied with increasing concentrations of the breakthrough fraction. At low concentrations, granulocyte colony formation was almost exclusively observed. With increasing concentrations of this fraction, an increasing proportion of the colonies were found to contain macrophages. The effect of concentration of this activity was in marked contrast to previous findings where the incidence of granulocyte colony formation was inversely related to the concentration of colony-stimulating activity. This differential responsiveness of cell to stimulus has previously been interpreted as low concentrations of a growth and differentiation factor being required for macrophage production and high concentrations of the same factor required for granulocyte formation. Separation of these activities by DEAE Sephadex chromatography, and alteration of the dose-response curve, such that granulocyte colony formation varies directly with the amount of stimulator, indicates that the differentiation of these two cell blood lineages may be controlled by separate entities.  相似文献   

13.
Whole blood serum (WBS) and platelet-poor plasma-derived serum (PDS) from the same normal subject were compared for their abilities to support human megakaryocyte (MK) colony formation. In all cases, PDS promoted the growth of a higher number (20-50%) of MK colonies than did WBS. Increasing amounts of WBS decreased the number of colonies, whereas increasing concentration of PDS had no marked effects. Crude platelet extracts or platelet secretory products from thrombin-activated platelets also elicited an inhibition of MK colony formation in a dose-dependent manner. A complete inhibition was found for a dose equivalent to 1.10(9) platelets/ml and a 50% inhibition in a range of 1.10(7)-1.10(8) platelets/ml. These platelet products were also inhibitory for erythroid progenitor growth. Platelets from two patients with gray platelet syndrome elicited only a minor inhibition of MK growth, suggesting that the platelet alpha granule is the origin of this inhibition. When platelet extracts were acid-treated, the biological activity of the inhibitor on CFU-MK and CFU-E growth was 20-50-fold higher. In addition, a potent stimulatory activity on the growth of day 7 CFU-GM was observed. The enhancement of biological activities by acid treatment suggests that type beta transforming growth factor (TGF-beta) could be involved in this platelet inhibitory activity. The homogeneous native TGF-beta (from 1 pg to 1 ng/ml) produced the same effects previously induced by platelet products. It totally inhibited CFU-MK growth (at a 500 pg/ml), it inhibited CFU-E growth, and it stimulated growth of day 7 CFU-GM in the presence of a colony-stimulating factor. The inhibition of CFU-MK growth was also observed on purified progenitors. In conclusion, these results suggest that TGF-beta may be implicated in negative autocrine regulation of megakaryopoiesis. However, since this molecule has ubiquitous biological activities, its physiologic relevance as a normal regulator of megakaryopoiesis requires further investigation.  相似文献   

14.
The effects of transforming growth factor-beta 1 (TGF-beta 1) on human hematopoiesis were evaluated in combination with two other regulatory cytokines, namely, recombinant human tumor necrosis factor-alpha (TNF-alpha) and recombinant human interferon-alpha (rIFN-alpha). Combinations of TNF-alpha and TGF-beta 1 resulted in a synergistic suppression of colony formation by erythroid progenitor cells (BFU-E) and an additive suppression of granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. In addition, TGF-beta 1 synergized with rIFN-alpha to suppress CFU-GM formation, while the combined suppressive effects of both cytokines on CFU-GEMM and BFU-E were additive. When TGF-beta 1 was tested with TNF-alpha or IFN-alpha on granulocyte/macrophage colony-stimulating factor (GM-CSF)-stimulated bone marrow cells in a 5-day proliferation assay, the antiproliferative effects of TGF-beta 1 and TNF-alpha were additive, while those with TGF-beta 1 and rIFN-alpha were synergistic. A similar pattern was seen in the suppression of the myeloblastic cell line KG-1 where TGF-beta 1 in combination with TNF-alpha resulted in an additive suppression while inhibition by TGF-beta 1 and IFN-alpha was synergistic. These results demonstrate for the first time the cooperative effects between TGF-beta and TNF-alpha and IFN-alpha in the suppression of hematopoietic cell growth, raising the possibility that TGF-beta might be used in concert with TNF-alpha or IFN-alpha in the treatment of various myeloproliferative disorders.  相似文献   

15.
本文报道了重组白介素6-假单胞菌外毒素融合蛋白(IL-6-PE40)对正常BN大鼠骨髓粒系造血的体外效应。10ng/ml的IL-6-PE40对高表达IL-6受体的U266骨髓瘤细胞的蛋白质合成抑制率为50%,1000ng/ml则为100%。1~1000ng/mlIL-6-PE40对正常骨髓未纯化细胞的CFU-GM集落形成和DNA合成无明显抑制,但IL-6却具有一定的刺激效应。提示正常骨髓粒系祖细胞和骨髓细胞可能不表达IL-6受体,IL-6-PE40对粒系造血仍具有某些细胞毒作用,但被IL-6-PE40中的IL-6极大地削弱了。  相似文献   

16.
We describe a 26 year-old male with a pancytopenia possibly due to cimetidine. Using progenitor cell culture techniques we investigated the mechanism of this bone marrow toxicity. Our results show a cimetidine dose-dependent inhibition of normal human CFU-GM colony formation as described by Fitchen and Koeffler in 1980. No differences in growth inhibition were found between the patients' recovery marrow and the controls. Toxicity on normal human CFU-MIX colony formation was, however, far more pronounced. At concentrations as low as 5 micrograms/ml the numbers of CFU-MIX colonies were decreased by almost 20% and more than 30% in cultures of two normal bone marrow samples. A significant decrease in CFU-MIX colony size was measured even at therapeutic levels (0.5 micrograms/ml). No obvious decrease in CFU-GM colony size was noticed at low concentrations. Experiments with T-cell- and monocyte-depleted bone marrow samples gave similar results: a pronounced inhibition of the CFU-MIX colony formation at low concentrations of cimetidine whereas the CFU-GM formation was less affected. It is therefore very unlikely that Accessory cells play part in the cimetidine induced CFU-MIX inhibition. Our results suggest the existence of H2 histamine receptors on human CFU-MIX (= multipotent progenitor cell). Blocking these receptors prevents the multipotent progenitor cell from going into the DNA-synthesis phase of the cell cycle.  相似文献   

17.
3'-azido-3'-deoxythymidine (Azidothymidine or AZT) has attained wide critical utility in the treatment of acquired immunodeficiency syndrome (AIDS). Unfortunately, treatment with AZT is associated with the development of severe hematopoietic toxicity. The AZT sensitivity of marrow progenitors was different with an IC 50 of 10(-8) M and 10(-6) M for respectively BFU-E and CFU-GM/GEMM. Data reported here show that recombinant human interleukin-1 alpha (IL-1 alpha), a pleiotropic cytokine, was demonstrated to be efficient to protect normal human as well as murine hematopoietic progenitors (CFU-GM, CFU-GEMM and BFU-E) from the toxic effect of AZT. The maximal effect was observed with 30 U/ml (Human cells) or 100 U/ml (murine cells) IL-1 alpha for BFU-E and CFU-GM/GEMM, with a marked effect at 1 U/ml. The results demonstrate that marrow progenitors respond differently to AZT and point out the potential efficacy of IL-1 alpha to enhance the proliferation of hematopoietic stem cells treated with growth factors (IL-3, erythropoietin) and to minimize the hematopoietic toxicity associated with AZT treatment.  相似文献   

18.
The effects of recombinant cytokines on the ploidy of human megakaryocytes derived from megakaryocyte progenitors were studied using serum-free agar cultures. Nonadherent and T cell-depleted marrow cells were cultured for 14 days. Megakaryocyte colonies were identified in situ by the alkaline phosphatase anti-alkaline phosphatase technique, using monoclonal antibody against platelet IIb/IIIa. The ploidy of individual megakaryocytes in colonies was determined by microfluorometry with DAPI (4',6-diamidino-2-phenylindole) staining. Recombinant human interleukin 3 (rhIL-3) and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) supported megakaryocyte colony formation in a dose-dependent manner. However, both rhIL-3 and rhGM-CSF had no definite ability to increase the ploidy values. Recombinant human erythropoietin (rhEpo) or recombinant human macrophage colony-stimulating factor (rhM-CSF) by itself did not stimulate the growth of megakaryocyte progenitors. rhEpo or rhM-CSF, however, stimulated increases in the number, size and ploidy values of megakaryocyte colonies in the presence of rhIL-3 or rhGM-CSF. Recombinant human interleukin 6 (rhIL-6) showed no capacity to generate or enhance megakaryocyte colony formation when added to the culture alone or in combination with rhIL-3. rhIL-6, however, increased the ploidy values in colonies when added with rhIL-3. These results show that rhEpo, rhM-CSF and rhIL-6 affect endomitosis and that two factors are required for megakaryocyte development.  相似文献   

19.
The effects of recombinant human tumor necrosis factor (TNF), lymphotoxin (LT), and interferon-gamma (IFN-gamma) on the growth of human hemopoietic progenitor cells in clonal culture have been examined. Colony growth was induced by using granulocyte colony-stimulating factor (G-CSF), or granulocyte-macrophage colony-stimulating factor (GM-CSF). A suppressive effect of TNF, LT, and IFN-gamma on the development of granulocyte, macrophage, and mixed granulocyte/macrophage colonies was shown. Suppression of colonies formed after stimulation with G-CSF was greater than that observed after stimulation with GM-CSF. In the presence of a monoclonal antibody to TNF, or polyclonal antibodies to either LT or IFN-gamma, the inhibitory effect of the molecule to which the antibody was directed was abrogated. These findings suggest that progenitor cells responsive to G-CSF or GM-CSF have different sensitivities to the effects of TNF, LT, and IFN-gamma. Defining the interactions of growth factors and inhibitors should increase understanding of mechanisms underlying diseases associated with suppression of normal hemopoiesis, and in predicting the effects in vivo of these bioregulatory molecules in clinical medicine.  相似文献   

20.
The effects of the N-linked oligosaccharide inhibitors swainsonine and N-butyldeoxynojirimycin (NB-DNJ) on granulopoiesis was investigated using human bone marrow cells in in vitro liquid and agar cultures. The addition of the inhibitors into cultures containing granulocyte colony-stimulating factor (G-CSF) suppressed maturation from myelocytes into mature neutrophils. Swainsonine did not induce apoptosis, but NB-DNJ induced considerable apoptosis, especially in the presence of G-CSF. This result indicated that the decrease of mature neutrophils by swainsonine was not because of cell degeneration. In the case of NB-DNJ, it was thought to be because of both maturation suppression and apoptosis. In a colony-forming unit-granuloid (CFU-G) colony assay, the number of colonies was increased in the presence of the inhibitors, but the morphology of colonies was predominantly compact, or immature. The inhibitors also suppressed the expressions of mRNAs of CCAAT/enhancer binding protein epsilon (C/EBPepsilon) and G-CSF receptor as markers of terminal neutrophil maturation. These findings suggested that the incompleteness of N-linked oligosaccharide leads to the suppression of terminal neutrophil maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号