首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The dose delivered to airway cells is a critical factor whether one is addressing the therapeutic (i.e., positive) effects of inhaled pharmacologic agents or the toxic (i.e., negative) effects of pollutants. In this study, theoretical models describing particle deposition have been compared with experimental data from the literature. In the simulations, airways can be either roughor smooth-walled to be consistent with human lungs which can be either lined by cartilaginous rings (i.e., rough) or muscle (i.e., smooth). Particle motion for rough-walled airways within generations I=1–6 is calculated using the formula proposed by Martonen et al. (1). For smooth-walled airways within generations I=7–10, particle motion is calculated using the formula proposed by Martonen et al. (2). Theoretical predictions of particle deposition efficiencies are not only in agreement with the overall best fit empirical correlation presented by Cohen and Asgharian (3) over a wide range of dimensionless diffusion parameters, but also match individual experimental measurements (only available in I=1–6) with regard to effects of the parameters of particle size, flow rate, and airway dimensions. The mean difference in the ratio of experimental-to-theoretical particle diffusion values is 0.9 for a flow rate of 18 L/min and 1.1 for a flow rate of 34 L/min (i.e., the difference is only about 10%) within the upper airways of the casts (airway generations I=1–6), the mean difference for the whole casts was much greater. This may be attributed to the uncertainty of flow conditions in the peripheral airways as a result of the trimmmed nature of the casts. Overall, the findings suggest that the model can be a valuable component of aerosol therapy and risk assessment protocols, especially to address effects of enhanced deposition of pharmacologic drugs and radionuclides at sites within the human tracheobronchial tree.  相似文献   

2.
The deposition of aerosol particles in the human lung airways is due to two distinct mechanisms. One is by direct deposition resulting from diffusion, sedimentation and impaction as the aerosol moves in and out of the lung. The other is an indirect mechanism by which particles are transported mechanically from the tidal air to the residential air and eventually captured by the airways due to intrinsic particle motion. This last mechanism is not well understood at present. Using a trumpet airway model constructed from Weibel's data, a two-component theory is developed. In this theory, the particle concentrations in the airways and the alveoli at a given airway depth are considered to be quantitatively different. This difference in concentrations will cause a net mixing between the tidal and residential aerosol as the aerosol is breathed in and out. A distribution parameter is then introduced to account for the distribution of ventilation. The effect of intrinsic particle motion on the aerosol mixing is also included. From this theory, total and regional deposition in the lung at the steady mouth breathing without pause is calculated for several different respiratory cycles. The results agree reasonably well with the experimental data.  相似文献   

3.
This paper aims to improve current understanding of flow structure and particle deposition in asthmatic human airways. A single, symmetric airway bifurcation, corresponding to generations 10–11 of Weibel’s model, is investigated through validated numerical simulations. The parent airway segment is modelled as a smooth circular tube. The child segments are considered asthmatic and their cross-section is modelled as a constricted tube with sinusoidal folds uniformly distributed along the circumference. The flow structure and particle deposition pattern for normal (i.e., healthy) and asthmatic airway bifurcations are compared and discussed. The numerical results reveal that the secondary flow in the asthmatic airway bifurcation is much stronger than in the healthy one, resulting in higher particle deposition. The effects of size of the lumen area and number of folds on particle deposition and pressure drop are also investigated. It is found that particle deposition efficiency is significantly affected by lumen area of the asthmatic segment (the smaller the lumen area, the higher the particle deposition efficiency). The effect of number of folds is small. Particle deposition efficiency also increases with Reynolds number. The pressure drop in the asthmatic airway bifurcation depends mainly on size of the lumen area. The effect of number of folds becomes important for strongly collapsed airways.  相似文献   

4.
Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dynamics, the deposition of 1- and 3-μm aerosol particles was predicted in models of human alveolar sac and terminal acinar bifurcation under rhythmic wall motion for two breathing conditions (functional residual capacity = 3 liter, tidal volume = 0.5 and 0.9 liter, breathing period = 4 s). Particles entering the model during one inspiration period were tracked for multiple breathing cycles until all particles deposited or escaped from the model. Flow recirculation inside alveoli occurred only during transition between inspiration and expiration and accounted for no more than 1% of the whole cycle. Weak flow irreversibility and convective transport were observed in both models. The average deposition efficiency was similar for both breathing conditions and for both models. Under normal gravity, total deposition was ~33 and 75%, of which ~67 and 96% occurred during the first cycle, for 1- and 3-μm particles, respectively. Under zero gravity, total deposition was ~2-5% for both particle sizes. These results support previous findings that gravitational sedimentation is the dominant deposition mechanism for micrometer-sized aerosols in acinar airways. The results also showed that moving walls and multiple breathing cycles are needed for accurate estimation of aerosol deposition in acinar airways.  相似文献   

5.
The extent to which laryngeal-induced flow features penetrate into the upper tracheobronchial (TB) airways and their related impact on particle transport and deposition are not well understood. The objective of this study was to evaluate the effects of including the laryngeal jet on the behavior and fate of inhaled aerosols in an approximate model of the upper TB region. The upper TB model was based on a simplified numerical reproduction of a replica cast geometry used in previous in vitro deposition experiments that extended to the sixth respiratory generation along some paths. Simulations with and without an approximate larynx were performed. Particle sizes ranging from 2.5 nm to 12 mum were considered using a well-tested Lagrangian tracking model. The model larynx was observed to significantly affect flow dynamics, including a laryngeal jet skewed toward the right wall of the trachea and a significant reverse flow in the left region of the trachea. Inclusion of the laryngeal model increased the tracheal deposition of nano- and micrometer particles by factors ranging from 2 to 10 and significantly reduced deposition in the first three bronchi of the model. Considering localized conditions, inclusion of the laryngeal approximation decreased deposition at the main carina and produced a maximum in local surface deposition density in the lobar-to-segmental bifurcations (G2-G3) for both 40-nm and 4-microm aerosols. These findings corroborate previous experiments and highlight the need to include a laryngeal representation in future computational and in vitro models of the TB region.  相似文献   

6.
Particle deposition in obstructed airways   总被引:4,自引:1,他引:3  
Luo HY  Liu Y  Yang XL 《Journal of biomechanics》2007,40(14):3096-3104
One approach to tackle the particle deposition in human lungs in close proximity is to develop an understanding of the particle motion in bifurcation airways. Chronic obstructive pulmonary disease (COPD) is one of the most common diseases in humans. COPD always results in inflammation that leads to narrowing and obstructing of the airways. The obstructive airways can alter the respiratory flow and particle deposition significantly. In order to study the effect of obstruction on particle deposition, four three-dimensional four-generation lung models based on the 23-generation model of Weibel [1963. Morphometry of the Human Lung. New York Academic Press, Springer, Berlin.] have been generated. The fully three-dimensional incompressible laminar Navier-Stokes equations are solved using computational fluid dynamics (CFD) solver on structured hexahedral meshes. Subsequently, a symmetric four-generation airway model serves as the reference and the other three models are considered to be obstructed at each generation, respectively. The calculation results show that the obstructive airway has significant influence on the particle deposition down-stream of the obstruction. The skewed velocity profile in the bifurcation airway is modified by the throat; consequently, more particles impact on the divider which results in higher deposition efficiency.  相似文献   

7.
We investigated how breath holding increases the deposition of micrometer particles in pulmonary airways, compared with the deposition during inhalation period. A subject-specific airway model with up to thirteenth generation airways was constructed from multi-slice CT images. Airflow and particle transport were simulated by using GPU computing. Results indicate that breath holding effectively increases the deposition of 5μm particles for third to sixth generation (G3-G6) airways. After 10s of breath holding, the particle deposition fraction increased more than 5 times for 5μm particles. Due to a small terminal velocity, 1μm particles only showed a 50% increase in the most efficient case. On the other hand, 10μm particles showed almost complete deposition due to high inertia and high terminal velocity, leading to an increase of 2 times for G3-G6 airways. An effective breath holding time for 5μm particle deposition in G3-G6 airways was estimated to be 4-6s, for which the deposition amount reached 75% of the final deposition amount after 10s of breath holding.  相似文献   

8.
Inhaled particles can be either harmful (e.g., smoke, exhaust, viruses) or beneficial (e.g., a therapeutic drug). The accurate and computationally efficient simulation of particle transport and deposition remains a challenge because it requires the simultaneous solution of the Navier-Stokes equations and multiple advection-diffusion mass transport equations when the particles are modeled as multiple mono-dispersed populations. The solution of these equations requires that multiple length scales be resolved since the ratio of advection to diffusion varies among the different equations. Here, the spectral element method is examined because the high-order approximation provides greater flexibility in resolving multiple length scales. The problem geometry is based on the Weibel model A of the human airway for convergence tests and the first three generations of a typical rat airway for experimental validation. Particles in the size range 1 to 100 nm are simulated for deposition results. The particle concentration and flux were determined using meshes of varying coarseness to represent the geometry along with basis polynomials of order 5 to 11. The higher-order elements accurately propagate the short wavelengths contained in the advection-diffusion solution without sacrificing efficiency for the more computationally expensive Navier-Stokes solution. As the diffusion coefficient in the advection-diffusion equation decreases (i.e., particle size increases) the advantages of the spectral elements become apparent for the coupled system.  相似文献   

9.
A computational model to predict deposition of a wide variety of particulate pollutants in several species of mammals is presented. The model incorporates breathing pattern and detailed anatomical models of the respiratory tract based on extensive morphometric measurements of individual airways. The predicted deposition from this general model is in close agreement with observed deposition of monodisperse aerosols in rats. Particle size and density and respiratory breathing patterns are the critical parameters affecting regional deposition.  相似文献   

10.
The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.  相似文献   

11.
In vivo bifurcating airways are complex and the airway segments leading to the bifurcations are not always straight, but curved to various degrees. How do such curved inlet tubes influence the motion as well as local deposition and hence the biological responses of inhaled particulate matter in lung airways? In this paper steady laminar dilute suspension flows of micron-particles are simulated in realistic double bifurcations with curved inlet tubes, i.e., 0 degrees < or =theta< or =90 degrees, using a commercial finite-volume code with user-enhanced programs. The resulting air-flow patterns as well as particle transport and wall depositions were analyzed for different flow inlet conditions, i.e., uniform and parabolic velocity profiles, and geometric configurations. The curved inlet segments have quite pronounced effects on air-flow, particle motion and wall deposition in the downstream bifurcating airways. In contrast to straight double bifurcations, those with bent parent tubes also exhibit irregular variations in particle deposition efficiencies as a function of Stokes number and Reynolds number. There are fewer particles deposited at mildly curved inlet segments, but the particle deposition efficiencies at the downstream sequential bifurcations vary much when compared to those with straight inlets. Under certain flow conditions in sharply curved lung airways, relatively high, localized particle depositions may take place. The findings provide necessary information for toxicologic or therapeutic impact assessments and for global lung dosimetry models of inhaled particulate matter.  相似文献   

12.
Mucociliary function is a primary defense mechanism of the tracheobronchial airways, and yet the response of this system to an inhalational hazard, such as ozone, is undefined in humans. Utilizing noninvasive techniques to measure deposition and retention of insoluble radiolabeled particles on airway mucous membranes, we studied the effect on mucus transport of 0.2 and 0.4 ppm ozone compared with filtered air (FA) in seven healthy males. During 2-h chamber exposures, subjects alternated between periods of rest and light exercise with hourly spirometric measurement of lung function. Mechanical and mucociliary function responses to ozone by lung airways appeared concentration dependent. Reduction in particle retention was significant (P less than 0.005) (i.e., transport of lung mucus was increased during exposure to 0.4 ppm ozone and was coincident with impaired lung function; e.g., forced vital capacity and midmaximal flow rate fell by 12 and 16%, respectively, and forced expiratory volume at 1 s by 5%, of preexposure values). Regional analysis indicated that mucus flow from distal airways into central bronchi was significantly increased (P less than 0.025) by 0.2 ppm ozone. This peripheral effect, however, was buffered by only a marginal influence of 0.2 ppm ozone on larger bronchi, such that the resultant mucus transport for all airways of the lung in aggregate differed only slightly from FA exposures. These data may reflect differences in regional diffusion of ozone along the respiratory tract, rather than tissue sensitivity. In conclusion, mucociliary function of humans is acutely stimulated by ozone and may result from fluid additions to the mucus layer from mucosal and submucosal secretory cells and/or alteration of epithelial permeability.  相似文献   

13.
The significance of convective and diffusive gas transport in the respiratory system was assessed from the response of combined inert gas and particle boluses inhaled into the conducting airways. Particles, considered as "nondiffusing gas," served as tracers for convection and two inert gases with widely different diffusive characteristics (He and SF6) as tracers for convection and diffusion. Six-milliliter boluses labeled with monodisperse di-2-ethylhexyl sebacate droplets of 0.86-microns aerodynamic diameter, 2% He, and 2% SF6 were inspired by three anesthetized mechanically ventilated beagle dogs to volumetric lung depths up to 170 ml. Mixing between inspired and residual air caused dispersion of the inspired bolus, which was quantified in terms of the bolus half-width. Dispersion of particles increased with increasing lung depth to which the boluses were inhaled. The increase followed a power law with exponents less than 0.5 (mean 0.39), indicating that the effect of convective mixing per unit volume was reduced with depth. Within the pulmonary dead space, the behavior of the inert gases He and SF6 was similar to that of the particles, suggesting that gas transport was almost solely due to convection. Beyond the dead space, dispersion of He and SF6 increased more rapidly than dispersion of particles, indicating that diffusion became significant. The gas and particle bolus technique offers a suitable approach to differential analysis of gas transport in intrapulmonary airways of lungs.  相似文献   

14.
To understand how to assess optimally the risks of inhaled particles on respiratory health, it is necessary to comprehend the uptake of ultrafine particulate matter by inhalation during the complex transport process through a non-dichotomously bifurcating network of conduit airways. It is evident that the highly toxic ultrafine particles damage the respiratory epithelium in the terminal bronchioles. The wide range of in silico available and the limited realistic model for the extrathoracic region of the lung have improved understanding of the ultrafine particle transport and deposition (TD) in the upper airways. However, comprehensive ultrafine particle TD data for the real and entire lung model are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the ultrafine particle TD in the terminal bronchioles for the development of future therapeutics. The Euler-Lagrange (E-L) approach and ANSYS fluent (17.2) solver were used to investigate ultrafine particle TD. The physical conditions of sleeping, resting, and light activity were considered in this modelling study. A comprehensive pressure-drop along five selected path lines in different lobes was calculated. The non-linear behaviour of pressure-drops is observed, which could aid the health risk assessment system for patients with respiratory diseases. Numerical results also showed that ultrafine particle-deposition efficiency (DE) in different lobes is different for various physical activities. Moreover, the numerical results showed hot spots in various locations among the different lobes for different flow rates, which could be helpful for targeted therapeutical aerosol transport to terminal bronchioles and the alveolar region.  相似文献   

15.
A model is developed to calculate the deposition of hygroscopic aerosols in the human tracheobronchial (TB) tree. The TB airflow pattern assumed is consistent with experimental observations and accounts for anatomical features such as the larynx and cartilaginous rings in large airways. Some original deposition efficiency formulae are presented for laminar and turbulent airstreams. Stepwise growth is simulated by changes in particle size and density at each TB generation. The dose distribution of NaCl aerosols is studied as a function of inhaled particle size and flow rate. Two NaCl growth rate curves are used which differ in the mode of aerosol-air mixing in the trachea. The initial rate of aerosol mixing in the human due to the laryngeal jet is shown to be an important factor affecting the deposition of hygroscopic aerosols. Total TB deposition of NaCl exceeds that for nonhygroscopic particles of the same inhaled aerodynamic size. Hygroscopic growth can also influence the regional TB distribution of dose when submicron NaCl particles grow rapidly enough to deposit by impaction and sedimentation.  相似文献   

16.
Models of the human respiratory tract were developed based on detailed morphometric measurements of a silicone rubber cast of the human tracheobronchial airways. Emphasis was placed on the “Typical Path Lung Model” which used one typical pathway to represent a portion of the lung, such as a lobe, or to represent the whole lung. The models contain geometrical parameters, including airway segment diameters, lengths, branching angles and angles of inclination to gravity, which are needed for estimating inhaled particle deposition. Aerosol depositions for various breathing patterns and particle sizes were calculated using these lung models and the modified Findeisen-Landahl computational scheme. The results agree reasonably well with recent experimental data. Regional deposition, including lobar deposition fractions, are also calculated and compared with results based on the ICRP lung deposition model.  相似文献   

17.
Aerosol delivery to the airways of the human respiratory tract, followed by absorption, constitutes an alternative route of administration for compounds unsuitable for delivery by conventional oral and parenteral routes. The target for aerosol drug delivery is the airways epithelium, i.e. tracheal, bronchial, bronchiolar and alveolar cells, which become the site of drug deposition. These epithelial layers also serve as a barrier to the penetration of inhaled material. An in vitro model for aerosol deposition and transport across epithelia in the human airways may be a good predictor of in vivo disposition. The present preliminary studies begin an investigation that blends the dynamics of aerosol delivery and the basis of an in vitro simulated lung model to evaluate the transport properties of a series of molecular weight marker compounds across human-derived bronchiolar epithelial cell monolayers. An Andersen viable cascade impactor was used as a delivery apparatus for the deposition of size-segregated particles onto monolayers of small airway epithelial cells and Calu-3 cells. It was shown that these cell layers can withstand placement in the impactor, and that permeability can be tested subsequent to removal from the impactor.  相似文献   

18.
This study investigates electrostatic fields surrounding the human head and particle deposition onto facial skin and eyes caused by the combined effect of electrostatic and wind fields. The electrostatic fields are calculated by a three-dimensional numerical model calculating the field strength between a field source and a human head. The deposition velocity can be viewed as determined by the sum of two contributions: that of an electrostatic field and that of a wind field. Deposition velocities are calculated by a semiempirical particle deposition model that considers particle transport from the free stream to the human face. The particle deposition model uses the electrostatic field model results as input parameters and is applied to the forehead and eyes of two facial shapes for two different turbulence conditions and aerosol charge distributions. The results of different practical working conditions, under which the potential difference between head (person) and source ranges from 5.6 to 15.0 kV, indicates that the presence of electrostatic fields always increases particle deposition for industrial aerosols. For aged aerosols an effect is only present for submicron particles. Bioelectromagnetics 19:246–258, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Inhaled particles reaching the alveolar walls have the potential to cross the blood–gas barrier and enter the blood stream. Experimental evidence of pulmonary dosimetry, however, cannot be explained by current whole lung dosimetry models. Numerical and experimental studies shed some light on the mechanisms of particle transport, but realistic geometries have not been investigated. In this study, a three dimensional expanding model including two generations of respiratory bronchioles and five terminal alveolar sacs was created from a replica human lung cast. Flow visualization techniques were employed to quantify the fluid flow while utilizing streamlines to evaluate recirculation. Pathlines were plotted to track the fluid motion and estimate penetration depth of inhaled air. This study provides evidence that the two generations immediately proximal to the terminal alveolar sacs do not have recirculating eddies, even for intense breathing. Results of Peclet number calculations indicate that substantial convective motion is present in vivo for the case of deep breathing, which significantly increases particle penetration into the alveoli. However, particle diffusion remains the dominant mechanism of particle transport over convection, even for intense breathing because inhaled particles do not reach the alveolar wall in a single breath by convection alone. Examination of the velocity fields revealed significant uneven ventilation of the alveoli during a single breath, likely due to variations in size and location. This flow field data, obtained from replica model geometry with realistic breathing conditions, provides information to better understand fluid and particle behavior in the acinus region of the lung.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号