首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Gibberellins (GAs) are plant hormones with diverse roles in plant growth and development. SPINDLY (SPY) is one of several genes identified in Arabidopsis that are involved in GA response and it is thought to encode an O-GlcNAc transferase. Genetic analysis suggests that SPY negatively regulates GA response. To test the hypothesis that SPY acts specifically as a negatively acting component of GA signal transduction, spy mutants and plants containing a 35S:SPY construct have been examined. A detailed investigation of the spy mutant phenotype suggests that SPY may play a role in plant development beyond its role in GA signaling. Consistent with this suggestion, the analysis of spy er plants suggests that the ERECTA (ER) gene, which has not been implicated as having a role in GA signaling, appears to enhance the non-GA spy mutant phenotypes. Arabidopsis plants containing a 35S:SPY construct possess reduced GA response at seed germination, but also possess phenotypes consistent with increased GA response, although not identical to spy mutants, during later vegetative and reproductive development. Based on these results, the hypothesis that SPY is specific for GA signaling is rejected. Instead, it is proposed that SPY is a negative regulator of GA response that has additional roles in plant development.  相似文献   

2.
Active gibberellins (GAs) are endogenous factors that regulate plant growth and development in a dose-dependent fashion. Mutant plants that are GA deficient, or exhibit reduced GA responses, display a characteristic dwarf phenotype. Extragenic suppressor analysis has resulted in the isolation of Arabidopsis mutations, which partially suppress the dwarf phenotype conferred by GA deficiency and reduced GA-response mutations. Here we describe detailed studies of the effects of two of these suppressors, spy-7 and gar2-1, on several different GA-responsive growth processes (seed germination, vegetative growth, stem elongation, chlorophyll accumulation, and flowering) and on the in planta amounts of active and inactive GA species. The results of these experiments show that spy-7 and gar2-1 affect the GA dose-response relationship for a wide range of GA responses and suggest that all GA-regulated processes are controlled through a negatively acting GA-signaling pathway.  相似文献   

3.
4.
The expression of the Arabidopsis ATHB-2 gene is light-regulated both in seedlings and in adult plants. The gene is expressed at high levels in rapidly elongating etiolated seedlings and is down-regulated by a pulse of red light (R) through the action of a phytochrome other than phytochrome A or B, or by a pulse of far-red light (FR) through the action of phytochrome A. In green plants, the expression of the ATHB-2 gene is rapidly and strongly enhanced by lowering the R:FR ratio perceived by a phytochrome other than A or B. Returning the plant to a high R:FR ratio results in an equally rapid decrease of the ATHB-2 mRNA. Consistently, plants overproducing ATHB-2 show developmental phenotypes characteristic of plants grown in low R:FR: elongated petioles, reduced leaf area, early flowering, and reduced number of rosette leaves. Taken together, the data strongly suggest a direct involvement of ATHB-2 in light-regulated growth phenomena throughout Arabidopsis development.  相似文献   

5.
Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4. This indicates that, in Arabidopsis, 7-oxidation and 3-oxidation are rate-limiting steps in GA plant hormone biosynthesis that control plant development. With an opposite effect, overexpression of pumpkin seed-specific GA 20-oxidase1 (CmGA20ox1) in Arabidopsis resulted in dwarfed plants that flower late with reduced levels of GA4 and increased levels of physiological inactive GA17 and GA25 and unexpected GA34 levels. Severe dwarfed plants were obtained by overexpression of the pumpkin GA 2-oxidase1 (CmGA2ox1) in Arabidopsis. This dramatic change in phenotype was accompanied by a considerable decrease in the levels of bioactive GA4 and an increase in the corresponding inactivation product GA34 in comparison to control plants. In this study, we demonstrate the potential of four pumpkin GA oxidase-encoding genes to modulate the GA plant hormone pool and alter plant stature and development.  相似文献   

6.
7.
The photoregulatory activity of the phytochrome photoreceptor requires the synthesis and covalent attachment of the linear tetrapyrrole prosthetic group phytochromobilin. Because the mammalian enzyme biliverdin IX alpha reductase (BVR) is able to functionally inactivate phytochromobilin in vitro, this investigation was undertaken to determine whether BVR expression in transgenic plants would prevent the synthesis of functionally active phytochrome in vivo. Here, we show that plastid-targeted, constitutive expression of BVR in Arabidopsis yields plants that display aberrant photomorphogenesis throughout their life cycle. Photobiological and biochemical analyses of three transgenic BVR lines exhibiting a 25-fold range of BVR expression established that the BVR-dependent phenotypes are light dependent, pleiotropic, and consonant with the loss of multiple phytochrome activities. Chlorophyll accumulation in BVR-expressing transgenic plants was particularly sensitive to increased light fluence rates, which is consistent with an important role for phytochrome in light tolerance. Under blue light, transgenic BVR plants displayed elongated hypocotyls but retained phototropic behavior and the ability to fully deetiolate. Directed BVR expression may prove to be useful for probing the cellular and developmental basis of phytochrome-mediated responses and for selective control of individual aspects of light-mediated plant growth and development.  相似文献   

8.
Sorghum [Sorghum bicolor (L.) Moench] homozygous for ma3R lacks a type II, light-stable phytochrome of 123 kD and has a number of phenotypic characteristics consistent with the absence of functional phytochrome B. We have used plants heterozygous at Ma3 (Ma3/ma3R and ma3/ma3R) to determine the effect of dosage of ma3R on plant growth, flowering, gibberellin (GA) levels, and content of the 123-kD phytochrome. Both Ma3/ma3R and ma3/ma3R produced the same number of tillers per plant as their respective homozygous non-ma3R parents. Height of the heterozygotes was intermediate between the homozygous parents, although it was more similar to the non-ma3R genotypes. In both field and growth-chamber environments, the timing of floral initiation and anthesis in the heterozygotes also was intermediate, again more similar to non-ma3R plants. In Ma3/ma3R, levels of GA53, GA19, GA20, and GA1 were almost exactly intermediate between levels detected in Ma3/Ma3 and ma3R/ma3R plants. Immunoblot analysis indicated that there was less of the 123-kD phytochrome in Ma3/ma3R than in homozygous Ma3, whereas none was detected in ma3R/ma3R. The degree of dominance of Ma3 and ma3 over ma3R varies with phenotypic trait, indicating that mechanisms of activity of the 123-kD phytochrome vary among the biochemical processes involved in each phenotypic character. Although the heterozygotes were similar to homozygous Ma3 and ma3 plants in growth and flowering behavior, Ma3/ma3R contained 50% less of the bioactive GA (GA1) than non-ma3R genotypes. Thus, sensitivity to endogenous GAs also may be regulated by the 123-kD phytochrome. To fully regulate plant growth and development, two copies of Ma3 or ma3 are required to produce sufficient quantities of the light-stable, 123-kD phytochrome.  相似文献   

9.
Three independent recessive mutations at the SPINDLY (SPY) locus of Arabidopsis confer resistance to the gibberellin (GA) biosynthesis inhibitor paclobutrazol. Relative to wild type, spy mutants exhibit longer hypocotyls, leaves that are a lighter green color, increased stem elongation, early flowering, parthenocarpy, and partial male sterility. All of these phenotypes are also observed when wild-type Arabidopsis plants are repeatedly treated with gibberellin A3 (GA3). The spy-1 allele is partially epistatic to the ga1-2 mutation, which causes GA deficiency. In addition, the spy-1 mutation can simultaneously suppress the effects of the ga1-2 mutation and paclobutrazol treatment, which inhibit different steps in the GA biosynthesis pathway. This observation suggests that spy-1 activates a basal level of GA signal transduction that is independent of GA. Furthermore, results from GA3 dose-response experiments suggest that GA3 and spy-1 interact in an additive manner. These results are consistent with models in which the SPY gene product regulates a portion of the GA signal transduction pathway.  相似文献   

10.
11.
The phytochrome nuclear gene family encodes photoreceptor proteins that mediate developmental responses to red and far red light throughout the life of the plant. From studies of the dicot flowering plant Arabidopsis, the family has been modeled as comprising five loci, PHYA- PHYE. However, it has been shown recently that the Arabidopsis model may not completely represent some flowering plant groups because additional PHY loci related to PHYA and PHYB of Arabidopsis apparently have evolved independently several times in dicots, and monocot flowering plants may lack orthologs of PHYD and PHYE of Arabidopsis. Nonetheless, the phytochrome nucleotide data were informative in a study of organismal evolution because the loci occur as single copy sequences and appear to be evolving independently. We have continued our investigation of the phytochrome gene family in flowering plants by sampling extensively in the grass family. The phytochrome nuclear DNA data were cladistically analyzed to address the following questions: (1) Are the data consistent with a pattern of differential distribution of phytochrome genes among monocots and higher dicots, with homologs of PHYA, B, C, D, and E present in higher dicots, but of just PHYA, B, and C in monocots, and (2) what phylogenetic pattern within Poaceae do they reveal? Results of these analyses, and of Southern blot experiments, are consistent with the observation that the phytochrome gene family in grasses comprises the same subset of loci detected in other monocots. Furthermore, for studies of organismal phylogeny in the grass family, the data are shown to provide significant support for relationships that are just weakly resolved by other data sets.   相似文献   

12.
Urakami E  Yamaguchi I  Asami T  Conrad U  Suzuki Y 《Planta》2008,228(5):863-873
Immunomodulation is a means to modulate an organism's function by antibody production to capture either endogenous or exogenous antigens. We have recently succeeded in obtaining gibberellin (GA)-deficient phenotypes in Arabidopsis thaliana by using anti-bioactive GA antibodies. In this study, a single-chain antibody (scFv) against GA(24), a precursor GA, was utilized to repress the biosynthesis of bioactive gibberellins. Stable accumulation of the scFv in endoplasmic reticulum (ER) was achieved by being produced as a fusion with GFP as well as KDEL ER-retention signal. The transgenic plants showed GFP fluorescence in the reticulate cortical ER network in epidermal cells. The GFP-scFv fusion produced in plants maintained its binding activity. The transgenic plants showed GA-deficient phenotypes, including reduced rosette leaf development, delayed flower induction and reduced stem elongation of the main culm, especially in the early stage of inflorescence growth. Contrarily, stem elongation of the main culm at a later stage, or that of lateral shoots was much less affected by scFv production. These phenotypes were different from anti-bioactive GA scFv-producing lines, whose stem elongation was continuously repressed throughout the inflorescence development. The GA-deficient phenotypes were recovered by treatment with GA(24) and bioactive GA(4), the latter being more effective. The transgenic lines contained conspicuously higher endogenous GA(24) and clearly less GA(4) than wild-type plants. The expression of GA 20-oxidase and GA 3-oxidase genes, which are feedback-regulated by GA signaling, were up-regulated in those plants. These results demonstrate that the scFv trapped GA(24) in ER and inhibited metabolism of GA(24) to bioactive GA(4).  相似文献   

13.
Phytochromes are a family of related chromoproteins that regulate photomorphogenesis in plants. Ectopic overexpression of the phytochrome A in several plant species has pleiotropic effects, including substantial dwarfing, increased pigmentation, and delayed leaf senescence. We show here that the dwarf response is related to a reduction in active gibberellins (GAs) in tobacco (Nicotiana tabacum) overexpressing oat phytochrome A under the control of the cauliflower mosaic virus (CaMV) 35S promoter and can be suppressed by foliar applications of gibberellic acid. In transgenic seedlings, high concentrations of oat phytochrome A were detected in stem and petiole vascular tissue (consistent with the activity of the CaMV 35S promoter), implicating vascular tissue as a potential site of phytochrome A action. To examine the efficacy of this cellular site, oat phytochrome A was also expressed using Arabidopsis chlorophyll a/b-binding protein (CAB) and the Arabidopsis ubiquitin (UBQ1) promoters. Neither promoter was as effective as CaMV 35S in expressing phytochrome in vascular tissue or in inducing the dwarf phenotype. Collectively, these data indicate that the spatial distribution of ectopic phytochrome is important in eliciting the dwarf response and suggest that the phenotype is invoked by elevated levels of the far-red-absorbing form of phytochrome within vascular tissue repressing GA biosynthesis.  相似文献   

14.
Several dwarf plum genotypes (Prunus salicina L.), due to deficiency of unknown gibberellin (GA) signalling, were identified. A cDNA encoding GA 2-oxidase (PslGA2ox), the major gibberellin catabolic enzyme in plants, was cloned and used to screen the GA-deficient hybrids. This resulted in the identification of a dwarf plum hybrid, designated as DGO24, that exhibits a markedly elevated PslGA2ox signal. Grafting 'Early Golden' (EG), a commercial plum cultivar, on DGO24 (EG/D) enhanced PslGA2ox accumulation in the scion part and generated trees of compact stature. Assessment of active GAs in such trees revealed that DGO24 and EG/D accumulated relatively much lower quantities of main bioactive GAs (GA(1) and GA(4)) than control trees (EG/M). Moreover, the physiological function of PslGA2ox was studied by determining the molecular and developmental consequences due to ectopic expression in Arabidopsis. Among several lines, two groups of homozygous transgenics that exhibited contrasting phenotypes were identified. Group-1 displayed a dwarf growth pattern typical of mutants with a GA deficiency including smaller leaves, shorter stems, and delay in the development of reproductive events. In contrast, Group-2 exhibited a 'GA overdose' phenotype as all the plants showed elongated growth, a typical response to GA application, even under limited GA conditions, potentially due to co-suppression of closely related Arabidopsis homologous. The studies reveal the possibility of utilizing PslGA2ox as a marker for developing size-controlling rootstocks in Prunus.  相似文献   

15.
16.
Phytochrome A (phyA) and phytochrome B photoreceptors have distinct roles in the regulation of plant growth and development. Studies using specific photomorphogenic mutants and transgenic plants overexpressing phytochrome have supported an evolving picture in which phyA and phytochrome B are responsive to continuous far-red and red light, respectively. Photomorphogenic mutants of Arabidopsis thaliana that had been selected for their inability to respond to continuous irradiance conditions were tested for their ability to carry out red-light-induced enhancement of phototropism, which is an inductive phytochrome response. We conclude that phyA is the primary photoreceptor regulating this response and provide evidence suggesting that a common regulatory domain in the phyA polypeptide functions for both high-irradiance and inductive phytochrome responses.  相似文献   

17.
18.
Previous studies have shown that reduced gibberellin (GA) level or signal promotes plant tolerance to environmental stresses, including drought, but the underlying mechanism is not yet clear. Here we studied the effects of reduced levels of active GAs on tomato (Solanum lycopersicum) plant tolerance to drought as well as the mechanism responsible for these effects. To reduce the levels of active GAs, we generated transgenic tomato overexpressing the Arabidopsis thaliana GA METHYL TRANSFERASE 1 (AtGAMT1) gene. AtGAMT1 encodes an enzyme that catalyses the methylation of active GAs to generate inactive GA methyl esters. Tomato plants overexpressing AtGAMT1 exhibited typical GA‐deficiency phenotypes and increased tolerance to drought stress. GA application to the transgenic plants restored normal growth and sensitivity to drought. The transgenic plants maintained high leaf water status under drought conditions, because of reduced whole‐plant transpiration. The reduced transpiration can be attributed to reduced stomatal conductance. GAMT1 overexpression inhibited the expansion of leaf‐epidermal cells, leading to the formation of smaller stomata with reduced stomatal pores. It is possible that under drought conditions, plants with reduced GA activity and therefore, reduced transpiration, will suffer less from leaf desiccation, thereby maintaining higher capabilities and recovery rates.  相似文献   

19.
Aux/IAA proteins are phosphorylated by phytochrome in vitro   总被引:22,自引:0,他引:22       下载免费PDF全文
  相似文献   

20.
EAF1 regulates vegetative-phase change and flowering time in Arabidopsis.   总被引:3,自引:0,他引:3  
We have identified a new locus that regulates vegetative phase change and flowering time in Arabidopsis. An early-flowering mutant, eaf1 (early flowering 1) was isolated and characterized. eaf1 plants flowered earlier than the wild type under either short-day or long-day conditions, and showed a reduction in the juvenile and adult vegetative phases. When grown under short-day conditions, eaf1 plants were slightly pale green and had elongated petioles, phenotypes that are observed in mutants altered in either phytochrome or the gibberellin (GA) response. eaf1 seed showed increased resistance to the GA biosynthesis inhibitor paclobutrazol, suggesting that GA metabolism and/or response had been altered. Comparison of eaf1 to other early-flowering mutants revealed that eaf1 shifts to the adult phase early and flowers early, similarly to the phyB (phytochrome B) and spy (spindly) mutants. eaf1 maps to chromosome 2, but defines a locus distinct from phyB, clf (curly leaf), and elf3 (early-flowering 3). These results demonstrate that eaf1 defines a new locus involved in an autonomous pathway and may affect GA regulation of flowering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号