首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Five strains of trypanosomatids, Herpetomonas megaseliae, H. samuelpessoai, H. muscarum muscarum, H. muscarum ingenoplastis and a newly isolated Herpetomonas sp., were examined for the enzymes of arginine-ornithine metabolism. Ornithine carbamoyltransferase (E.C. 2.1.3.3) and argininosuccinate lyase (E.C. 4.3.2.1) were detected in cell extracts of H. megaseliae, H. samuelpessoai and H. muscarum muscarum but not of others. Both enzymes seemed repressible by arginine, which could account for their apparent absence in H. muscarum ingenoplastis and Herpetomonas sp., which grow in a complex, arginine-rich medium. Additionally, arginine deiminase (E.C. 3.5.3.6) and citrulline hydrolase were detected in cell extracts of the 5 strains examined. This latter enzyme, previously described only in Tetrahymena, effects the single-step hydrolysis of citrulline into ammonia, ornithine and CO2. Arginase (E.C. 3.5.3.1) and urease (E.C. 3.5.1.5) were not found in any of the strains examined. Some of the physicochemical characteristics of the enzymes encountered are described.  相似文献   

2.
The syntheses of arginase and ornithine transaminase were studied in two strains ofSaccharomyces cerevisiae, viz. strain B and strain α-Σ1278b. Derepression of both enzymes during nitrogen starvation was shown only by strain B, non-specific induction of arginase only by strain α-Σ1278b. This different response of both strains studied reveals substantial differences in the regulation of enzyme synthesis among yeast strains of one and the same species. The specific enzyme activities observed in chemostat cultures with arginine as the nitrogen source and different sugars, at variable carbon to nitrogen ratios, did not indicate the involvement of carbon catabolite repression in the regulation of arginase and ornithine transaminase syntheses. Specific arginase activities observed in the continuous cultures varied widely and did not show a correlation with the intracellular arginine concentration. Extracellular steady-state arginine concentrations higher than about 0.1mm, in addition to abundant energy supply, were found to be required for high production of arginase. It is suggested that, besides intracellular arginine, extracellular arginine may provide an induction signal necessary for full-scale induction of arginase synthesis. A possible intermediary role of arginine permeases or of other membrane proteins is discussed.  相似文献   

3.
Summary A Neurospora mutant (aga) lacking arginase was selected by virtue of its inability to utilize arginine as a source of ornithine, using a strain in which ornithine was needed to satisfy a proline requirement. It mapped in linkage group VII (right arm), close to wc. The most important characteristic of the mutant was its extreme sensitivity to arginine. Inclusion of 1 mM arginine in the medium lead to a 40-fold increase in the arginine pool and a 90% inhibition of growth. This inhibition was relieved by the addition of ornithine or proline. The high arginine pool was associated with only a slight repression of two biosynthetic enzymes examined and with a five-fold induction of ornthine transaminase, the second enzyme of arginine catabolism. It is expected that the aga mutant will be of value in further work on the regulation of arginine biosynthesis in Neurospora.  相似文献   

4.
Summary The utilisation of acetylhistidine by histidine auxotrophs of E. coli K-12 was found to require a functioning acetylornithinase. The growth, on acetylhistidine-containing media, of his mutants possessing this enzyme was inhibited by arginine or its precursors acetylornithine, ornithine and citrulline. Mutants able to overcome this inhibition belonged to two classes: those (selected on acetylhistidine+acetylornithine or arginine) in which the arginine biosynthetic enzymes were repressible, as in the parent strains; and those (selected on acetylhistidine+acetylornithine, ornithine, citrulline or arginine) in which these enzymes were formed at high, non-repressible levels. The altered properties of the first class were shown genetically not to result from mutation in the argR or argECBH regions; the data are consistent with the second class carrying mutations at the argR locus.It is supposed that arginine, ornithine or citrulline, by repressing the formation of acetylornithinase, diminish the rate at which acetylhistidine can be utilised (although an acetylhistidine uptake system under arginine control would equally explain the results); non-repressible mutants would escape this effect. The kinetic properties, in crude extracts, of acetylornithinase from the parent strains and from members of each mutant class, with acetylornithine and acetylhistidine as substrates, were investigated. It was tentatively concluded that, in accord with the genetic results, the first class do not possess an acetylornithinase altered to make it function better with acetylhistidine as substrate. It is suggested that arginine may affect acetylhistidine utilisation by affecting its uptake in a manner not shared with ornithine or citrulline, as well as by repressing proteins of the arginine system, and that this arginine-specific effect is inoperative in the first class of mutants. The nature of the changes leading to ability to grow on acetylhistidine+acetylornithine remains unknown. Possible applications of these findings to the selection of hitherto undiscovered but potentially informative mutant types are discussed.  相似文献   

5.
Enzyme repression in the arginine pathway ofSaccharomyces cerevisiae was demonstrated by comparison of specific enzyme activities in yeast grown with and without arginine in various mineral salts media. Of the enzymes tested only ornithine transcarbamoylase was found to be repressed by exogenous arginine. Acetylornithine-glutamate transacetylase and argininosuccinate lyase were not affected. No relationship between specific enzyme activities and intracellular arginine concentration was observed.During the adaptation of yeast grown in a medium supplemented with amino acids to a mineral salts medium, the enzymes ornithine transcarbamoylase and argininosuccinate lyase were not derepressed beyond their specific activities normally present in yeast grown in mineral salts media. Neither were the arginine-degrading enzymes arginase and ornithine transaminase broken down during this adaptation.Thanks are due to Professor E. G. Mulder and to Professor H. Veldkamp for stimulatory discussions; to the Heineken's Brouwerij, Rotterdam, and to the Landbouwhogeschoolfonds for research grants.  相似文献   

6.
This work was carried out to determine the activity of enzymes involved in arginine metabolism inLactobacillus plantarum isolated from wine and previously characterised at molecular level. The activity of the enzymes arginine deiminase and ornithine transcarbamylase was determined and citrulline and ornithine formed were analysed by HPLC analysis. Although the enzymatic activity was detected in all the strains analysed, a strong variability was observed between strains.Lactobacillus plantrum strain Lp60 is the strain with more possibilities to accumulate citrulline, precursor of the carcinogenic ethyl-carbamate, as showed by its high arginine deiminase activity and low ornithine transcarbamylase activity.  相似文献   

7.
Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.  相似文献   

8.
Eight enzymes involved in the conversion of acetylglutamate to arginine in Neurospora crassa were studied. The data indicate that of three enzymes early in the sequence, only the first, acetylglutamate kinase, is a nonorganellar enzyme. The next two, N-acetyl-gamma-glutamyl-phosphate reductase and acetylornithine aminotransferase, are in the mitochondrion, which was previously shown to contain the subsequent enzymes: acetylornithine-glutamate acetyltransferase, ornithine carbamyltransferase, and carbamyl-phosphate synthetase A (arginine specific). The last two enzymes of the pathway, argininosuccinate synthetase and argininosuccinate lyase, were previously shown to be cytosolic. All enzymes but one have low amplitudes or repression. Their levels respond little to arginine excess and are about twofold elevated (threefold for ornithine carbamyltransferase) as a result of arginine limitation in the arg-12-8 strain. No restriction of the incorporation of mitochondrial enzymes into mitochondria could be detected when the levels of these enzymes were elevated. Two enzymes, acetylglutamate kinase and carbamyl-phosphate synthetase A, which initiate the synthesis of the ornithine and guanidino moieties of arginine, respectively, show the lowest specific activities in crude extract. These enzymes display special regulatroy features. Acetylglutamate kinase, which has a typically low amplitude of repression, is subject to feedback inhibition. Carbamyl-phosphate synthetase A is wholly insensitive to arginine or citrulline in vitro or in vivo, but displays a very large amplitude of repression (about 60-fold). It is unique in that it can be almost completely repressed by growth of mycelia in excess arginine. These data suggest that mitochondrial localization may be incompatible with a mechanism of feedback inhibition by a cytosolic effector, arginine. Further, they suggest that the high repressibility of carbamyl-phosphate synthetase A compensates for its feedback insensitivity.  相似文献   

9.
Summary The ornithine transaminase (EC.2.6.1.13) of Saccharomyces cerevisiae is induced by arginine, ornithine, and their analogs. Genetic regulatory elements which are involved in this induction process have been defined due to the isolation of specific mutants. Two classes of OTAse operator mutants have previously been described; three unlinked genes are presumed to code for a specific repressor, CARGR of both of the arginine catabolic enzymes, arginase, and ornithine transaminase. The level of transaminase of cells grown on ammonia plus arginine is much lower than it is when arginine is the sole nitrogen source. Ammonia thus seems to limit the amount of enzyme synthesized when arginine is present in the growth medium. Nevertheless, all attempts to disclose a nitrogen catabolite repression process in OTAse synthesis have failed; neither the action of mutations that release this regulation on arginase and other catabolic enzymes, nor the use of derepressing growth conditions, affect OTAse synthesis. A decrease of the cells' arginine pool when amonia or aminoacids (serine, glutamate) are added to arginine as a nitrogen nutrient results in a progressive reduction of transaminase synthesis. This suggests that arginine is the only physiological effector in those conditions: ammonia or some aminoacids would reduce the enzyme synthesis because of an inducer exclusion. The first stage of OTAse induction would then be operated by the CARGR repressor, and an additional regulatory element might take part in the full scale process. Preliminary data favoring the involvment of such an element are presented.  相似文献   

10.
In Pseudomonas aeruginosa the synthesis of only two out of eight arginine biosynthetic enzymes tested was regulated. Comparisons were made between the specific activities of these enzymes in bacteria grown on arginine or on its precursor, glutamate. N2-Acetylornithine 5-aminotransferase (ACOAT), an enzyme involved in both the biosynthesis and catabolism of arginine, was induced about 14-fold during growth of the organism on arginine as the only carbon and nitrogen source, and the anabolic ornithine carbamoyltransferase (aOTC), a strictly biosynthetic enzyme, was repressed 18-fold. Addition of various carbon sources to the arginine medium led to repression of ACOAT and to derepression of aOTC. Fructose, which supported only slow growth of P. aeruginosa, had a weak regulatory effect on the synthesis of the two arginine enzymes while citrate, a good carbon source for this organism, had a strong effect. The repression of ACOAT by citrate was not relieved by adding cyclic AMP to the medium. Under a variety of growth conditions leading to different enzyme activities, a linear relationship between the reciprocal of the specific activity of ACOAT and the specific activity of aOTC was observed. This inverse regulation of the formation of the two enzymes suggested that a single regulatory system governs their synthesis. Such a view was supported by the isolation of citrate-resistant regulatory mutants which constitutively formed ACOAT at the induced level and aOTC at the repressed level.  相似文献   

11.
In Aeromonas formicans two inducible catabolic pathways of L-arginine have been characterized. The arginine decarboxylase is induced by arginine which also induces the three enzymes of the arginine deiminase pathway but only in stress conditions such as a shift from aerobic growth conditions to very low oxygen tension. Addition of glucose to medium containing arginine leads to repression of the enzymes involved in the arginine deiminase pathway while exogenous cAMP prevents that repression of enzyme synthesis by glucose. This suggests that the induction of arginine deiminase pathway is regulated by carbon catabolite repression and the energetic state of the cell.  相似文献   

12.
Citrulline is synthesized in mitochondria of Neurospora crassa from ornithine and carbamoyl phosphate. In mycelia grown in minimal medium, carbamoyl phosphate limits citrulline (and arginine) synthesis. Addition of arginine to such cultures reduces the availability of intramitochondrial ornithine, and ornithine then limits citrulline synthesis. We have found that for some time after addition of excess arginine, carbamoyl phosphate synthesis continued. Very little of this carbamoyl phosphate escaped the mitochondrion to be used in the pyrimidine pathway in the nucleus. Instead, mitochondrial carbamoyl phosphate accumulated over 40-fold and turned over rapidly. This was true in ornithine- or ornithine carbamoyltransferase-deficient mutants and in normal mycelia during feedback inhibition of ornithine synthesis. The data suggest that the rate of carbamoyl phosphate synthesis is dependent to a large extent upon the specific activity of the slowly and incompletely repressible synthetic enzyme, carbamoyl-phosphate synthetase A. In keeping with this conclusion, we found that when carbamoyl-phosphate synthetase A was repressed 2-10-fold by growth of mycelia in arginine, carbamoyl phosphate was still synthesized in excess of that used for residual citrulline synthesis. Again, only a small fraction of the excess carbamoyl phosphate could be accounted for by diversion to the pyrimidine pathway. The continued synthesis and turnover of carbamoyl phosphate in mitochondria of arginine-grown cells may allow rapid resumption of citrulline formation after external arginine disappears and no longer exerts negative control on ornithine biosynthesis.  相似文献   

13.
In Euglena gracilis arginine deiminase was located in the mitochondrial matrix. The highly purified enzyme required Co2+ for the enzyme reaction with the Km value of 0.23 mM, and its optimum pH was 9.7 to 10.3. The molecular weight of the native enzyme protein was 87,000 by gel filtration, and SDS-acrylamide gel electrophoresis showed that the enzyme consisted of two identical subunits with a molecular weight of 48,000. Euglena arginine deiminase was inhibited by sulfhydryl inhibitors, indicating that a sulfhydryl group is involved in the active center of the enzyme. It exhibited negative cooperativity in binding with arginine. l-α-amino-β-guanidino-propionate, d-arginine, and l-homoarginine strongly inhibited the enzyme while β-guanidinopro-pionate, γ-guanidinobutyrate, and guanidinosuccinate did not. Considerable inhibition was also observed with citrulline and ornithine. We discuss the effects of the unique properties of the Euglena arginine deiminase on the regulation of arginine metabolism in this protozoon.  相似文献   

14.
Dundas, Ian E. D. (University of Illinois, Urbana), and H. Orin Halvorson. Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J. Bacteriol. 91:113-119. 1966.-Arginine was shown to be essential for growth of Halobacterium salinarium strain 1 in a chemically defined medium. Citrulline was the only compound which could substitute for arginine without affecting growth. Resting cells of H. salinarium converted arginine to citrulline and citrulline to ornithine. Cells grown in an arginine-free medium with C(14)-ureido-labeled citrulline incorporated the isotope mainly into the arginine of their proteins. The enzymes arginine desimidase and ornithine transcarbamylase were found and studied in cell-free extracts of H. salinarium. Experiments indicated that arginine was degraded in H. salinarium by arginine desimidase to citrulline, and that citrulline was further degraded by ornithine transcarbamylase to carbamyl phosphate and ornithine. Synthesis of arginine from citrulline seems to occur via the formation of argininosuccinic acid.  相似文献   

15.
The steady state concentrations of arginine and related intermediary metabolites of the arginine biosynthetic pathway in the eukaryote Neurospora crassa were varied and the concurrent de-repression of the enzymes ornithine transcarbamylase, argininosuccinate synthetase and argininosuccinase was measured. Pool variation was achieved endogenously by the introduction and combination of mutant enzymes with reduced specific activities. Measurements of activities of the mutationally unaltered enzymes showed various degrees of de-repression. The highest activity level for each of the three enzymes was about five times that found in the fully repressed wild-type strain. The variations observed in the pools were as follows: ornithine, 7-fold; citrulline, 700-fold; argininosuccinic acid, 400-fold; arginine, 300-fold.By this means a quantitative analysis of the process of repression is made possible. A strong correlation was found between the degree of de-repression of the three enzymes and the concentration of arginine. The de-repression follows a sigmoid curve with respect to arginine concentration. This is consistent with the interpretation that the pathway enzymes are subject to a repression system with arginine, or a simple derivative of it, acting as a co-repressor.  相似文献   

16.
The submitochondrial localization of the four mitochondrial enzymes associated with urea synthesis in liver of Squalus acanthias (spiny dogfish), a representative elasmobranch, was determined. Glutamine- and acetylglutamate-dependent carbamoyl-phosphate synthetase, ornithine carbamoyltransferase, glutamine synthetase, and arginase were all localized within the matrix of liver mitochondria. The subcellular and submitochondrial localization and activities of several related enzymes involved in nitrogen metabolism and gluconeogenesis in liver and dogfish are also reported. Pyruvate carboxylase and phosphoenolpyruvate carboxykinase were localized in the mitochondrial matrix. Synthesis of citrulline by isolated mitochondria from ornithine proceeds at a near optimal rate at ornithine concentrations as low as 0.08 mM. The same stoichiometry and rates of citrulline synthesis are observed when ornithine is replaced by arginine. The mitochondrial location of arginase does not appear to reflect a mechanism for regulating ornithine availability.  相似文献   

17.
In Neurospora crassa, the mitochondrial membrane separates ornithine used in arginine biosynthesis from ornithine used in the arginine degradative pathway in the cytosol. Ornithine easily exchanges across the mitochondrial membrane under conditions appropriate for synthesis of the immediate biosynthetic product, citrulline. Neither of the two mitochondrial enzymes required for the ornithine-to-citrulline conversion is feedback inhibitable in vitro. Nevertheless, when arginine is added to cells and cytosolic ornithine increases as arginine degradation begins, the rate of citrulline synthesis drops immediately to about 20% of normal (B. J. Bowman and R. H. Davis, Bacteriol. 130:285-291, 1977). We have studied this phenomenon in citrulline-accumulating strains carrying the arg-1 mutation. Citrulline accumulation is blocked when arginine is added to an arg-1 strain but not to an arg-1 strain carrying a mutation conferring insensitivity of intramitochondrial ornithine synthesis to arginine. Thus, ornithine is evidently unable to enter mitochondria in normal (feedback-sensitive) cells. Other experiments show that cytosolic ornithine enters mitochondria readily except when arginine or other basic amino acids are present at high levels in the cells. We conclude that in N. crassa, the mitochondrial membrane has evolved as a secondary site of feedback inhibition in arginine synthesis and that this prevents a wasteful cycling of catabolic ornithine back through the anabolic pathway. This is compared to the quite different mechanism by which the yeast Saccharomyces cerevisiae prevents a futile ornithine cycle.  相似文献   

18.
Lactobacillus leichmannii ATCC 4797 metabolizes arginine via the arginine dihydrolase pathway producing ornithine, ammonia, carbon dioxide, and ATP. The specific activities of arginine deiminase and ornithine transcarbamylase were two-or threefold lower (stationary growth phase) in galactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. When glucose was virtually exhausted from the medium, maximum activities of both enzymes were achieved. The formation of two first enzymes of the arginine dihydrolase pathway inL. leichmannii ATCC 4797 seems to be under the control of two processes: induction by arginine and repression of the induced synthesis by glucose.Dedicated to Dr. Luis F. Leloir on the occasion of his 80th birthday, 6 September 1986.  相似文献   

19.
Effect of the M (modifier) gene of Escherichia coli W on the expression of wild-type structural genes of four arginine biosynthetic enzymes was studied by examining enzyme activity in cell-free extracts of cultures grown in minimal medium and medium containing arginine. The mutant M gene was originally identified as causing arginine-induced synthesis of acetylornithine delta-transaminase in a strain deficient for the enzyme. The strains used in this study received the mutant M gene by recombination. Noncoordinate repression has been demonstrated for two more enzymes of the arginine regulon of E. coli W and the M(-) gene increases the degree of noncoordinate repression for the regulon. Mutation of the M gene results in altered regulation of acetylornithine delta-transaminase, ornithine transcarbamylase, and acetylornithinase. In addition, a decreased growth rate is observed. It is proposed that the M gene is a regulatory gene. A model is presented to explain the data which involves changes in operator-repressor affinity for the structural genes and possibly for the gene controlling arginyl transfer ribonucleic acid synthetase.  相似文献   

20.
The regulation of ornithine transcarbamylase (OTC) of Rhodotorula glutinis has been studied, by growing the yeasts in different carbon and nitrogen sources and estimating the enzyme level in crude yeasts extracts.The results show a nutritional repression of OTC by arginine, when added to the culture media as carbon, nitrogen or carbon and nitrogen sources. On the other hand ornithine does not exert any effect in the same experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号