首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matta CF  Bader RF 《Proteins》2002,48(3):519-538
The geometries of the 20 genetically encoded amino acids were optimized at the restricted Hartree-Fock level of theory using the 6-31+G* basis set. A detailed comparison showed the calculated geometries to be in excellent agreement with those determined by X-ray crystallography. The study demonstrated that the geometric parameters for the main-chain group and for the bonds and common functional groups of the side-chains exhibit a high degree of transferability among the members of this set of molecules. This geometric transferability is a necessary prerequisite for the corresponding transferability of their electron density distributions and hence of their bond and atomic properties. The transferability of the electron distributions will be demonstrated and exploited in the following paper of this series, which uses the topology of the electron density to define an atom within the quantum theory of atoms in molecules. Particular features of the geometries of the amino acids are discussed. It has been shown, for example, how the apparent anomaly of the Calpha-N bond length in a peptide being shorter than in the charged species Calpha-NH3+ is resolved when the charge separation is gauged by the differences in the charges of the Calpha and N atoms as opposed to the use of formal charges. A compilation of literature sources on experimental geometries covering each member of the 20 amino acids is presented. A set of rules for labeling the atoms and bonds, complementing the generally accepted IUPAC-IUB rules, is proposed to uniquely identify every atom and bond in the amino acids.  相似文献   

2.
Deoxyribonucleic acid (DNA) is an important molecule that has been extensively researched, mainly due to its structure and function. Herein, we investigated the electronic behavior of the DNA molecule containing 1008 atoms using density functional theory. The bond-charge (BC) model shows the relationship between charge density and atomic strain. Besides, the model mentioned above is combined with the bond-order-length-strength (BOLS) notion to calculate the atomic cohesive energy, the bond energy, and the local bond strain of the DNA chain. Using the BOLS-BC model, we were able to obtain information on the bonding features of the DNA chain and better comprehend the associated properties of electrons in biological systems. Consequently, this report functions as a theoretical reference for the precise regulation of the electrons and the bonding states of biological systems.  相似文献   

3.
The properties of the electron distribution in amides, peptides, and carboxylic acids, obtained from ab-initio molecular orbital calculations using both minimal and extended basis sets have been studied. These properties are discussed in terms of some of the common assumptions made in empirical conformational calculations of biomolecules. In particular, population analyses of 15 compounds in these families were carried out with both the minimal and extended basis sets, and compared with results of CNDO/2 calculations. It is suggested that population analysis is a useful tool for recognizing patterns of charge distributions, and investigating the transferability of parameters of different functional groups. However, its use for providing partial charges for conformational analysis is a questionable procedure. A more detailed analysis of the charge distribution was carried out by calculating the spatial electron distribution in the four compounds, N-methylacetamide, acetic acid, diketopiperazine, and N-acetyl-N′-methylalanine. Both total electron-density maps and differencedensity maps are presented. The properties of the overall shape of the molecule and the atoms in the molecule, are discussed in terms of the former along with three-dimensional shape plots of the total density. The distortion accompanying molecular formation, resulting in such features as the lone pair orbital and “bonding deensities” is discussed in terms of the difference maps. Semiquantitative estimates of the bonding and orbital densities resulting from the integration of the densities are also presented. Finally, one of the novel features of the study is the presentation of three-dimensional surfaces of constant difference densities from which the shapes of the orbitals and bonding densities emerge.  相似文献   

4.
In the present work, the distribution of the electronic charge density of the natural sex pheromone, the (Z)-13-hexadecen-11-ynyl acetate, in the female processionary moth, Thaumetopoea pytiocampa, and its nine analogue derivatives was studied within the framework of the Density Functional Theory and the Atoms in Molecules (AIM) Theory at B3LYP/6-31G *//B3LYP/6-31++G * * level. Additionally, molecular electrostatic potential (MEP) maps of the previously mentioned compounds were computed and compared. Furthermore, the substitution of hydrogen atoms from the methyl group in the acetate group by electron withdrawing substituents (i.e., halogen atoms) as well as the replacement effect of hydrogen by electron donor substituents (+I effect) as methyl group, were explored. The key feature of the topological distribution of the charge density in analogue compounds, such as the variations of the topological properties encountered in the region formed by neighbouring atoms from the substitution site were presented and discussed. Using topological parameters, such as electronic charge density, Laplacian, kinetic energy density, and potential energy density evaluated at bond critical points (BCP), we provide here a detailed analysis of the nature of the chemical bonding of these molecules. In addition, the atomic properties (population, charge, energy, volume, and dipole moment) were determined on selected atoms. These properties were analyzed at the substitution site (with respect to the natural sex pheromone) and related to the biological activity and to the possible binding site with the pheromone binding protein, (PBP). Moreover, the Laplacian function of the electronic density was used to locate electrophilic regions susceptible to be attacked (by deficient electron atoms or donor hydrogen). Our results indicate that the change in the atomic properties, such as electronic population and atomic volume, are sensitive indicators of the loss of the biological activity in the analogues studied here. The crucial interaction between the acetate group of the natural sex pheromone and the PBP is most likely to be a hydrogen bonding and the substitution of hydrogen atoms by electronegative atoms in the pheromone molecule reduces the hydrogen acceptor capacity. This situation is mirrored by the diminish of the electronic population on carbon and oxygen atoms at the carbonylic group in the halo-acetate group. Additionally, the modified acetate group (with electronegative atoms) shows new charge concentration critical points or regions of concentration of charge density in which an electrophilic attack can also occur. Finally, the use of the topological analysis based in the charge density distribution and its Laplacian function, in conjunction with MEP maps provides valuable information about the steric volume and electronic requirement of the sex pheromone for binding to the PBP.  相似文献   

5.
The charge density of sucrose was determined from a high-resolution X-ray data set measured at 20 K. The density distribution so obtained was analyzed quantitatively by application of Bader’s atoms in molecules (AIM) formalism, and a comparison was made with corresponding results from a B3LYP (6-311++G(3df,3pd)) calculation at the experimental geometry. Bond topological and atomic properties (volumes and charges) were derived and compared. The influence of hydrogen bonding on the experimental charge density was also studied qualitatively and quantitatively by means of topological properties. In terms of the hydrogen-bond energies, a grouping into strong, medium and very weak hydrogen bonds was made, the latter of which were involved in a bifurcated bond.  相似文献   

6.
α,α-Trehalose is of interest because of its cryoprotective and antidessicant properties, and because it possesses various technical anomalies such as 13C NMR spectra that give misleading indications of intramolecular structural symmetry. It is a non-reducing disaccharide, with the glycosidic oxygen atom shared by the anomeric carbon atoms of the two glucose rings, and is therefore subject to a proposed ‘overlapping’ exo-anomeric effect. We report here a study of the electron density of trehalose with X-ray diffraction and quantum mechanics calculations, similar to a recent study of sucrose, also a non-reducing molecule. In particular we studied the electron density around the glycosidic linkage and the hydrogen bonding with both deformation density and Atoms in Molecules (AIM) analyses. A total of 129,952 single crystal X-ray intensity measurements were collected on α,α-trehalose dihydrate to a resolution of sin θ/λ = 1.18 Å−1 at 100 K and refined with an aspherical multipole model to a final agreement factor of R1 = 0.0160. Wavefunctions were calculated at three levels of theory. Redistribution of electron density due to anomeric effects was reduced in trehalose, compared to sucrose. Five new C-H?O hydrogen bonds were confirmed with bond critical points and bond paths from AIM analyses, as were the previously proposed O-H?O hydrogen bonds.  相似文献   

7.
Matta CF  Bader RF 《Proteins》2003,52(3):360-399
This article presents a study of the molecular charge distributions of the genetically encoded amino acids (AA), one that builds on the previous determination of their equilibrium geometries and the demonstrated transferability of their common geometrical parameters. The properties of the charge distributions are characterized and given quantitative expression in terms of the bond and atomic properties determined within the quantum theory of atoms-in-molecules (QTAIM) that defines atoms and bonds in terms of the observable charge density. The properties so defined are demonstrated to be remarkably transferable, a reflection of the underlying transferability of the charge distributions of the main chain and other groups common to the AA. The use of the atomic properties in obtaining an understanding of the biological functions of the AA, whether free or bound in a polypeptide, is demonstrated by the excellent statistical correlations they yield with experimental physicochemical properties. A property of the AA side chains of particular importance is the charge separation index (CSI), a quantity previously defined as the sum of the magnitudes of the atomic charges and which measures the degree of separation of positive and negative charges in the side chain of interest. The CSI values provide a correlation with the measured free energies of transfer of capped side chain analogues, from the vapor phase to aqueous solution, yielding a linear regression equation with r2 = 0.94. The atomic volume is defined by the van der Waals isodensity surface and it, together with the CSI, which accounts for the electrostriction of the solvent, yield a linear regression (r2 = 0.98) with the measured partial molar volumes of the AAs. The changes in free energies of transfer from octanol to water upon interchanging 153 pairs of AAs and from cyclohexane to water upon interchanging 190 pairs of AAs, were modeled using only three calculated parameters (representing electrostatic and volume contributions) yielding linear regressions with r2 values of 0.78 and 0.89, respectively. These results are a prelude to the single-site mutation-induced changes in the stabilities of two typical proteins: ubiquitin and staphylococcal nuclease. Strong quadratic correlations (r2 approximately 0.9) were obtained between DeltaCSI upon mutation and each of the two terms DeltaDeltaH and TDeltaDeltaS taken from recent and accurate differential scanning calorimetry experiments on ubiquitin. When the two terms are summed to yield DeltaDeltaG, the quadratic terms nearly cancel, and the result is a simple linear fit between DeltaDeltaG and DeltaCSI with r2 = 0.88. As another example, the change in the stability of staphylococcal nuclease upon mutation has been fitted linearly (r2 = 0.83) to the sum of a DeltaCSI term and a term representing the change in the van der Waals volume of the side chains upon mutation. The suggested correlation of the polarity of the side chain with the second letter of the AA triplet genetic codon is given concrete expression in a classification of the side chains in terms of their CSI values and their group dipole moments. For example, all amino acids with a pyrimidine base as their second letter in mRNA possess side-chain CSI < or = 2.8 (with the exception of Cys), whereas all those with CSI > 2.8 possess an purine base. The article concludes with two proposals for measuring and predicting molecular complementarity: van der Waals complementarity expressed in terms of the van der Waals isodensity surface and Lewis complementarity expressed in terms of the local charge concentrations and depletions defined by the topology of the Laplacian of the electron density. A display of the experimentally accessible Laplacian distribution for a folded protein would offer a clear picture of the operation of the "stereochemical code" proposed as the determinant in the folding process.  相似文献   

8.
Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 3,4-dihydroxy-l-phenylalanine (3,4-DPA) in solid phase were recorded and analysed in this research. Along with this, the IR spectra in CHCl3 and the use of acetone as solvents of 3,4-DPA were also recorded. The equilibrium geometry, bonding features and harmonic vibrational frequencies were investigated with the help of density functional theory (DFT) method. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge including atomic orbital method and compared with experimental results. Stability of the molecule arising from hyperconjugative interactions and charge delocalisation was analysed using natural bond orbital analysis. The results show that charge in electron density (E D) in the σ* and π* antibonding orbitals and second-order delocalisation energies E(2) confirms the occurrence of intramolecular charge transfer within the molecule. UV–vis spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies, were analysed using the time-dependent (TD)-DFT approach. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound, which showed good agreement with the observed spectra.  相似文献   

9.
Density functional theory and atoms in molecules theory were used to study bond breakage and bond formation in the trans-2-butene protonation reaction in an acidic zeolitic cluster. The progress of this reaction along the intrinsic reaction coordinate, in terms of several topological properties of relevant bond critical points and atomic properties of the key atoms involved in these concerted mechanisms, were analyzed in depth. At B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p) level, the results explained the electron density redistributions associated with the progressive bond breakage and bond formation of the reaction under study, as well as the profiles of the electronic flow between the different atomic basins involved in these electron reorganization processes. In addition, we found a useful set of topological indicators that are useful to show what is happening in each bond/atom involved in the reaction site as the reaction progresses.  相似文献   

10.
Quantum chemical calculations were used to analyze the chemical bonding and the reactivity of phosphorus oxides (P4O6+n (n?=?0–4)). The chemical bonding was studied using topological analysis such as atoms in molecules (AIM), electron localization function (ELF), and the reactivity using the Fukui function. A classification of the P-O bonds formed in all structures was done according to the coordination number in each P and O atoms. It was found that there are five P-O bond types and these are distributed among the five phosphorus oxides structures. Results showed that there is good agreement among the evaluated properties (length, bond order, density at the critical point, and disynaptic population) and each P-O bond type. It was found that regardless of the structure in which a P-O bond type is present the topological and geometric properties do not have a significant variation. The topological parameters electron density and Laplacian of electron density show excellent linear correlation with the average length of P-O bond in each bond type for each structure. From the Fukui function analysis it was possible to predict that from P4O6 until P4O8 the most reactive regions are basins over the P.  相似文献   

11.
The relative stabilities of Guanine-Cytosine (G-C) DNA bare base pairs, its tautomeric forms and microhydrated base pairs are theoretically investigated with a focus on the keto-enol tautomerism as well as on the cis-trans isomerism using ab initio and density functional theory methods. The stabilities of the G-C bare base pairs, its tautomeric forms and microhydrated base pairs were affected by various factors including keto-enol tautomerization, cis-trans enol isomerization, and steric hindrance between the base pair and water molecules. The Atoms in Molecules theory (AIM) is employed to investigate H-bonding patterns both in bare and microhydrated base pairs. From the above topological results, an excellent linear correlation is shown between electron density [rho(r)], and its Laplacian [V2rho(r)] at the bond critical points. NBO analysis has been carried out to study the charge transfer between proton acceptor to the antibonding orbital of the X-H bond both in bare and microhydrated base pairs.  相似文献   

12.
The title molecule 1,5-diphenylpenta-2,4-dien-1-one (cinnamylideneacetophenone, CA) has been synthesised and characterised by FTIR, FT-Raman, NMR and UV–vis spectral analyses. The possible stable conformers of the CA molecule were searched by potential energy surface scan at B3LYP level of theory. The molecular geometry from X-ray determination of the CA molecule in the ground state has been compared using the density functional theory (DFT) with 6-31G(d,p) basis set. The harmonic vibrational modes, the corresponding wavenumbers and IR and Raman intensities of most stable conformer were calculated by the DFT method. The assignments of the fundamentals were proposed on the basis of total energy distribution calculations. The calculated 13C and 1H NMR chemical shifts using gauge including atomic orbitals approach are in good agreement with the observed chemical shifts. The molecular stability and bond strength have been investigated by applying natural bond orbital analysis. Using the time-dependent DFT method, the electronic absorption spectrum of the title compound has been predicted and the electronic transitions within the molecule have been interpreted. The molecular electrostatic potential map was used for predicting possible hydrogen and oxygen bonding sites in the CA molecule.  相似文献   

13.
Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement.  相似文献   

14.
The nature of the lithium/hydrogen bonding between (CH2)2X(X: C=CH2, O, S) and LiY/HY(Y=F, Cl, Br) have been theoretically investigated at MP2/6-311++G (d, p) level, using Bader’s “atoms in molecules (AIM)” theory and Weinhold’s “natural bond orbital (NBO)” methodology. The molecule formation density differences (MFDD) of the titled complexes are analyzed. Two kinds of geometries of the lithium/hydrogen bonded complexes are compared. As a whole, the nature of lithium bond and hydrogen bond are different. For the same electron donor and the same acceptor, lithium bond is stronger than hydrogen bond. For the same electron acceptor and different kind of donors, the interaction energies follows the n-type> π-type > pseudo-π-type order. For the same (CH2)2X, the interaction energy increases in the sequence of Y=F, Cl and Br for lithium bond systems while it decreases for hydrogen bond systems. Electron transfer plays an important role in the formation of lithium bond systems while it is less important in the hydrogen bond systems.  相似文献   

15.
The structure, spectral properties and the hydrogen bond interactions of 8-aza analogues of xanthine, theophylline and caffeine have been studied by using quantum chemical methods. The time-dependent density functional theory (TD-DFT) and the singly excited configuration interaction (CIS) methods are employed to optimize the excited state geometries of isolated 8-azaxanthine, 8-azatheophylline tautomers and 8-azacaffeine in both the gas and solvent phases. The solvent phase calculations are performed using the polarizable continuum model (PCM). The absorption and emission spectra are calculated using the time-dependent density functional theory (TD-DFT) method. The results from the TD-DFT calculations reveal that the excitation spectra are red shifted relative to absorption in aqueous medium. These changes in the transition energies are qualitatively comparable to the experimental data. The examination of molecular orbital reveals that the molecules with a small H→L energy gap possess maximum absorption and emission wavelength. The relative stability and hydrogen bonded interactions of mono and heptahydrated 8-azaxanthine, 8-azatheophylline tautomers and 8-azacaffeine have been studied using the density functional theory (DFT) and Møller Plesset perturbation theory (MP2) implementing the 6-311++G(d,p) basis set. The formation of strong N-H…O bond has resulted in the highest interaction energy among the monohydrates. Hydration does not show any significant impact on the stability of heptahydrated complexes. The atoms in molecule (AIM) and natural bonding orbital (NBO) analyses have been performed to elucidate the nature of the hydrogen bond interactions in these complexes.
Figure
Absorption and emission spectra of 8-aza analogues of xanthine, theophylline and caffeine in methanol medium  相似文献   

16.
To investigate the adsorption behaviour of CS2, CO2, SO2, H2Se and H2S gas molecules on the external surface of (6, 0) single-walled aluminium phosphide nanotube (AlPNT), the density functional theory (DFT) calculations at the B3LYP level of theory are performed. The partial densities of states (PDOS) for the SO2 molecule, the S and O atoms of SO2 molecule before and after adsorption on the surface of AlPNT have been plotted. The vibrational frequencies and physical properties such as chemical potential, chemical hardness, dipole moment and chemical electrophilicity of all studied complexes have been systematically investigated. The electron density and the Laplacian of the electron density for bond critical points have been examined by the AIM theory. Also the molecular dynamics (MD) simulations of two complexes with the minimum and maximum negative interaction energies that is: AlPNT/CO2 and AlPNT/SO2 complexes, respectively, have been considered.  相似文献   

17.
CCSD(T) calculations were performed to investigate the stabilities and interaction mechanisms of the AgRnX and XAgRn (X?=?F – I) series. Dissociation energies and frontier orbital properties demonstrate an increased trend of stabilities. Ag spd hybrids and Rn/X sp hybrids come into the σAg-Rn and σAg-X bonding orbital. The nature of Ag-Rn, Ag-X and Rn-X interactions were investigated by atoms in molecules (AIM) theory. The negative energy density and positive Laplacian values, as well as small electron densities at bond critical points (BCPs), characterize the moderate strength with partial covalence of interactions. BCP properties (?G/V and G/ρ), electron density deformations and natural resonance theory (NRT) results display increased covalence down the periodic table.  相似文献   

18.
The nature of M-O bond in MOX4 compounds (where M = Ru or Os and X = F, Cl, Br or I) was analyzed by density functional theory methods at the BP86/LANL2DZ level of theory. The obtained charge density was analyzed by Fermi hole analysis, natural bond order (NBO) analysis and atoms-in-molecules (AIM)-based methods. The M-O bond is essentially a triple bond, although strongly polarized. The clearest differences in bonding between the Ru and Os compounds can be found in the M-O σ bonds, where in the Os compounds we find more charge density resting close to O.  相似文献   

19.
Interaction between metal nanoparticles and biomolecules is important from the view point of developing and designing biosensors. Studies on proline tagged with gold nanoclusters are reported here using density functional theory (DFT) calculations for its structural, electronic and bonding properties. Geometries of the complexes are optimized using the PBE1PBE functional and mixed basis set, i. e., 6-311++G for the amino acid and SDD for the gold clusters. Equilibrium configurations are analyzed in terms of interaction energies, molecular orbitals and charge density. The complexes associated with cluster composed of an odd number of Au atoms show higher stability. Marked decrease in the HOMO-LUMO gaps is observed on complexation. Major components of interaction between the two moieties are: the anchoring N-Au and O-Au bond; and the non covalent interactions between Au and N-H or O-H bonds. The electron affinities and vertical ionization potentials for all complexes are calculated. They show an increased value of electron affinity and ionization potential on complexation. Natural bond orbital (NBO) analysis reveals a charge transfer between the donor (proline) and acceptor (gold cluster). The results indicate that the nature of interaction between the two moieties is partially covalent. Our results will be useful for further experimental studies and may be important for future applications.  相似文献   

20.
First-principles density functional theory calculations have been used to study the relative stability and analyse the chemical bonding of novel cross-linked carborane polymers. Atomic charges with several population analysis methods based on fully relaxed structures were calculated to interpret the chemical binding energy shifts of XPS spectra of these boron carbide polymers. The results indicate that a base structure with one aromatic linking unit with carborane is energetically favoured. The linear relationship between experimental core-level photoemission binding energies and computational partial atomic charges from four population analysis methods (Mulliken, Hirshfeld, atoms-in-molecules (AIM) and natural bond order (NBO)) were analysed and the results indicate that cross-linking occurs at icosahedral B sites non-adjacent to icosahedral carbon sites, in agreement with recently reported experimental results. The role of basis set size in determining partial atomic charges was found to vary with population analysis method. Best linear correlations were identified with the more robust population analysis methods (Hirshfeld, AIM and NBO) with the AIM methods noted as being particularly sensitive to basis set size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号