首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A tribal aboriginal community, the Mowanjum, from the Kimberley region in Western Australia has been screened to determine the extent of genetic variation in the products of genes coding for apolipoproteins, which are intimately involved in lipid metabolism. Of the seven systems tested, APOE and APOH revealed common structural variations, but their distribution patterns are significantly different from those found in European populations. Australian Aborigines were found to be unique because they have no APOE*2 and APOH*3 alleles and have strikingly high frequencies of the APOE*4 (26%) and APOH*1 (13%) alleles. The contrast in variation observed at these apolipoprotein loci between Australian Aborigines and Europeans not only makes these loci useful genetic markers in biologic anthropology studies but also provides a unique opportunity to investigate the role of genetic-environment interaction in determining interpopulation differences in cardiovascular disease risk factors.  相似文献   

2.
A Buryat population consisting of seven tribal groups in eastern Mongolia has been screened to determine the frequency distribution of different apolipoprotein E and H alleles (APOE and APOH, genes) coding for common isoforms and their association with quantitative plasma lipid levels. Allele frequencies at the APOE locus in 125 healthy Buryat aged 17 to 73 years were highest for APOE*3 (0.804), followed by APOE*4 (0.164) and APOE*2 (0.032). The APOH locus had high frequencies of APOH*2 (0.912) and APOH*3 (0.088). APOH*1 was not detected. No significant differences were observed in the overall APOE allele frequencies between the Buryat and the Siberian Evenki, Inuits, and Indians in Asia, or with some European whites. The frequency distribution of the overall APOH alleles of the Buryat was similar to that of the Japanese in Asia. Overall plasma lipid levels of the Buryat (males aged 20 to 73 years, females aged 21 to 64 years) were considerably lower, comparable to those of the Evenki. The APOE*4/E*3 males had significantly high total- and LDL-cholesterol levels compared with the APOE*3/E*3 males (p < 0.025 and p < 0.01, respectively). No significant effects of the APOH genotypes on any of the plasma lipid levels were observed. In particular, our data regarding APOE suggest that the Buryat are genetically close in allele frequencies to the Evenki and Inuits, but differ from them in the association of genotype APOE*4/E*3 with cholesterol levels.  相似文献   

3.
Mexico has approximately 100 million inhabitants. Most of the urban Mexican population has been considered mestizo (Indian and Spanish descent), whereas the Indian population predominates in rural areas and small towns in the countryside. In this study we analyzed the apolipoprotein E (APOE) polymorphism in Guadalajara (the second largest metropolitan area of Mexico) and its surrounding areas, two adjoining states (Nayarit and Durango), and an Indian town (Huichol Indians) from western Mexico. APOE*3 was the most common allele, and APOE*3/*3 was the most common genotype in all populations studied. Guadalajara revealed the highest frequency of the APOE*2 allele (7.8%); the frequency decreased in the rural area (4.4%), followed by Nayarit (1.6%), and was absent in Durango and in the Huichols. On the contrary, the lowest frequency of the APOE*4 allele was in Guadalajara (8.4%); the frequency increased in the rural area (9.3%), in Nayarit and Durango (11.5% and 11.7%), and reached a high frequency in the Huichol Indians (28%). The distribution of the APOE allele in the western population of Mexico is similar to those described in Mexican American migrants living in the United States but is different from those populations living in Mexico City. This study shows the heterogeneity of the Mexican population, where the frequency of the APOE*2 allele is higher in Guadalajara than in other urban areas of Mexico and is similar to frequencies described in the Caucasian population. On the contrary, the Huichols revealed the highest frequency of the APOE*4 allele in Mexico and in the Americas. This information could be useful for the study of dyslipidemias associated with chronic diseases and as markers of ethnic variation in the Americas.  相似文献   

4.
The joint distributions of phenotypes from the apolipoprotein E gene (APOE) and from a closely linked restriction site polymorphism at the apolipoprotein C1 locus (APOC1) were studied in population samples from Portugal and S?o Tomé e Príncipe (Gulf of Guinea), a former Portuguese colony that was originally populated by slaves imported from the African mainland. The frequencies of the APOE alleles (*2, *3, and *4) in Portugal and S?o Tomé fitted the ranges of variation generally observed in European and African populations, respectively. Haplotype analysis showed that in both populations the strength of linkage disequilibrium was highest for the APOE*2 allele and lowest for the APOE*4 allele, suggesting that the origin of the APOE alleles followed a 4-->3-->2 pathway and thus providing independent confirmation of the results from sequence homology studies with nonhuman primates. In accordance with global trends in the distribution of human genetic variation, the European sample from Portugal presented more intense linkage disequilibrium between APOE and APOC1 than the African sample from S?o Tomé where, despite the short 4-kb distance that separates the 2 loci, the level of association between the APOC1 alleles and APOE*4 was nonsignificant.  相似文献   

5.
Polymorphisms at the apolipoprotein B (APOB XbaI, EcoRI, insertion-deletion), apolipoprotein E (APOE), and angiotensin-converting enzyme (ACE) loci are thought to be involved in susceptibility to coronary artery disease (CAD) and myocardial infarction. The aim of this study was to determine whether the allele distribution of the APOB, APOE, and ACE polymorphisms is different in 2 Italian regions with higher (northern Italy) and lower (Sardinia) CAD occurrence. The frequencies of the APOB and APOE alleles that are considered CAD risk factors were higher in northern Italy (APOB X- = 0.655; APOB R- = 0.198; APOB insertion = 0.757; APOE*4 = 0.110) than in Sardinia (APOB X- = 0.568; APOB R- = 0.159; APOB insertion = 0.680; APOE*4 = 0.052), although only APOE allele frequencies differed significantly (p = 0.001). ACE deletion allele frequencies in the 2 geographic areas showed an opposite pattern (northern Italy = 0.658; Sardinia = 0.721). Furthermore, we investigated the impact of APOB and APOE polymorphisms on interindividual variation in total cholesterol level in the 2 Italian samples, which differ in dietary habits. Only APOE phenotypes showed different mean levels of total cholesterol; the association was significant only in northern Italy (p = 0.04), where continental dietary habits and higher mean cholesterol levels prevail. These results support the suggestion that the cholesterol increasing effect of APOE*4 is environmentally mediated. Analysis of allele distributions among European populations, with remarkable differences in CAD prevalence, revealed a constant positive relationship between APOE*4 allele frequency and CAD incidence. The highest frequencies of APOB X- and R- were observed in Finland, where the incidence of CAD is high, and there is a partial agreement between APOB R- frequency and CAD occurrence across Europe, while APOB insertion and ACE deletion alleles are evenly distributed among European populations.  相似文献   

6.
A screening of 22 DNA polymorphisms has been performed in western Mediterranean populations (Iberian Peninsula, Morocco, and Central Mediterranean Islands). The analyzed markers correspond to polymorphic sites in several candidate genes for cardiovascular disease including apolipopoteins and their receptors (APOA1, APOB, APOE, APOC1, APOC2, LPA, and LDLR), genes implied in the hemostasis regulation (Factor VII, alpha and beta-fibrinogen, alpha and beta platelet-integrin, tissue plasminogen activator, and plasminogen activator inhibitor-1), and the angiotensin converting enzyme gene. The results are presented of a partial analysis carried out in following population samples: 6 from the Iberian Peninsula, 2 from Morocco, and 3 from Central Islands. The degree of inter-population diversity was significant and consistent with data from other kind of genetic polymorphisms. The apportionment of the allele frequency variance supported a geographic structure into three main regions: Central Mediterranean Islands, the Iberia Peninsula and North Africa. The genetic distance pattern is compatible with a south-to-north North African influence in the Iberian Peninsula and a remarkable gene flow from sub-Saharan Africa into Morocco. Epidemiologically, North Africa is characterized by high frequencies of LPA PNR alleles with high number of repeats (protective for cardiovascular risk) and high frequencies of the APOE*E4 allele (risk factor) as compared with European populations.  相似文献   

7.
Isoelectric focusing and immunoblotting reveals considerable biochemical and genetic variation in the C1R subcomponent of the first complement component. The nature of the intraindividual biochemical variation can be explained by differences in sialic acid content because after digestion with neuraminidase the terminal sialic acids are removed to yield a single major band corresponding to the C1R polypeptide. Plasma samples from a large number of different ethnic groups, consisting of U.S. whites, U.S. blacks, Nigerian blacks, and Inuit, Aleut, and Amerindian populations from the Western Hemisphere have revealed genetically determined charge variation with heterozygous phenotypes consisting of two major asialo bands, indicating that the underlying variation is not due to variation in sialic acid content. Two previously reported common alleles, C1R*1 and CIR*2, have been observed in all studied populations, the notable exception being the Dogrib Indian population, which is devoid of the C1R*2 allele. Several new alleles--designated C1R*3, C1R*4, C1R*5, C1R*6, and C1R*7-have been observed, with variable frequencies ranging from the occurrence in a single individual and related family members to the polymorphic occurrence of certain alleles in several populations. Of these new alleles, the C1R*5 is of considerable interest in population and anthropological genetics studies. The C1R*5 allele is widely distributed, at a frequency of .03 to .17, in all of the North American aboriginal populations screened. This allele is not present in U.S. whites but is present at a polymorphic frequency in U.S. and Nigerian blacks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Apolipoprotein H (apoH, protein; APOH, gene) is considered to be an essential cofactor for the binding of certain antiphospholipid autoantibodies to anionic phospholipids. APOH exhibits a genetically determined structural polymorphism due to the presence of three common alleles (APOH*1, APOH*2 and APOH*3 ) detectable by isoelectric focusing (IEF) and immunoblotting. The APOH*3 allele can be further characterized into two subtypes, APOH*3W and APOH*3B, based upon its reactivity with monoclonal antibody 3D11. In this study we have determined the molecular basis of the APOH protein polymorphism and its distribution in three large U.S. population samples comprising 661 non-Hispanic whites, 444 Hispanics and 422 blacks. By direct DNA sequencing of PCR amplified fragments corresponding to the eight APOH exons, we identified two missense mutations that correspond to the APOH*1 and APOH*3W alleles. A missense mutation (G→A) in exon 3, which alters amino acid Ser to Asn at codon 88 and creates a restriction site for TSP509 I, was present in all APOH*1 allele carriers. A second missense mutation (G→C) at codon 316 in exon 8, which replaces amino acid Trp with Ser and creates a restriction site for BSTBI, was present in all APOH*3W carriers. The distribution of the Ser 88 Asn and Trp 316 Ser mutations was significantly different between the three racial groups. The frequency of the Asn-88 allele was 0.011, 0.043, and 0.056 in blacks, Hispanics and non-Hispanic whites, respectively. While the Ser-316 allele was observed sporadically in blacks (0.008), it was present at a polymorphic frequency in Hispanics (0.027) and non-Hispanic whites (0.059). The identification of the molecular basis of the APOH protein polymorphism will help to elucidate the structural – functional relationship of apoH in the production of antiphospholipid autoantibodies. Received: 20 November 1996 / Accepted: 13 February 1997  相似文献   

9.
L J Donald 《Human heredity》1976,26(3):234-238
Phenotype distributions and allele frequencies of adenylate kinase and esterase D were determined for four Canadian populations. In two population samples from south-western Ontario, allele frequencies at both loci were similar to those of European populations. In two northern, indigenous populations, the allele AK2 was not detected. There was variation at the EsD locus with EsD2 having a frequency of 0.176 in an Indian population, and 0.156 in an Eskimo population.  相似文献   

10.
Apolipoprotein E (APOE) genotypes were determined in 75 Mazatecan Indians and 83 Mexican mestizos. APOE allele and genotype frequencies in Mazatecans and mestizos were similar, with high frequencies of the APOE*3 allele (0.900 and 0.915, respectively) and the E3/3 genotype (0.813 and 0.831, respectively) and an absence in both samples of the APOE*2 allele. Our data are similar to those previously described for Mexican-American and Mayan populations, which show the highest frequency worldwide of the APOE*3 allele and the E3/3 genotype. Mazatecans and mestizos also show a decreased frequency of the APOE*4 allele when compared to other Amerindian groups. The absence of the APOE*2 allele has also been reported in other Amerindian groups such as Mayans and Cayapa, whereas in Caucasians the average frequency of this allele is about 8%. Our data are in agreement with previous reports showing absence of the APOE*2 allele in Native American groups. These findings suggest that the APOE*2 allele was absent in humans from northern Asia who settled in the Arctic and populated the American continent.  相似文献   

11.
Allele frequencies are most often reported from small convenience samples of unknown demographics and limited generalizability. We determined the distribution of apolipoprotein E genotype (APOE) and allele frequencies for a large, well-defined, representative, rural, population-based sample (n = 4450) aged 55-95 years in Ballabgarh, in the northern Indian state of Haryana. The overall APOE E*2, E*3, and E*4 allele frequencies were 0.039, 0.887, and 0.073, respectively; frequencies are also reported by age, sex, and religious/caste groups. The APOE*4 frequency is among the lowest reported anywhere in the world. APOE allele frequencies did not vary significantly by age or sex in this study. To our knowledge, this is the largest Indian sample ever genotyped for the APOE polymorphism. The representativeness of the sample and its known demographics provide a much-needed normative background for studies of gene-disease associations.  相似文献   

12.
As part of a larger epidemiological survey to study the prevalence of dementia in a suburb of Mumbai, Western India, we identified 78 cases with a Clinical Dementia Rating (CDR) > or = 1.0. Of these, 49 Alzheimer's disease (AD) cases were analyzed for risk association with APOE E*4 allele at apolipoprotein E gene (APOE) and presenilin-1 (PS-1) intron-8 polymorphism and were compared with 100 age- and sex-matched nondemented controls. Genotype analysis confirmed the association of APOE E*4 allele with AD as has been reported by various studies. We report a low frequency of APOE E*4 allele, consistent with a low prevalence of AD in this study. Comparisons with other similar studies on APOE from India suggest common risk factors for AD in the Indian population, which is diverse in its ethnic and racial characteristics. The frequency for allele 1 at PS-1 intron-8 polymorphism is the highest among all studies reported. This first report of PS-1 intron-8 polymorphism and AD from India demonstrates no significant association.  相似文献   

13.
High resolution two dimensional gel electrophoresis with the combination of isoelectric focusing (IEF) and density gradient sodium dodecyl-polyacrylamide gel electrophoresis (DG-PAGE) have been employed to investigate the distribution of APOE in Ramgarhia (n = 80) and Ramdasia (n = 70) of Punjab, India. Three alleles APOE*E2, APOE*E3 and APOE*E4 were observed in Ramgarhia and Ramdasia with the frequencies of 0.031, 0.913, 0.056 and 0.043, 0.886 and 0.071, respectively. Higher heterozygosity (20.8%) in Ramdasia reflects greater variation at the APOE locus. The APOE*E3 allele is found to be the highest (0.913) in Ramgarhia in comparison to forty-one populations of the world. A decreasing cline from south to north was evident for *E2 and *E4 allele frequencies (y = -0.002x + 0.141, r = 0.78 and y = -0.004x + 0.229, r = 0.83, respectively, and an increasing cline for the *E3 allele towards north was observed (y = 0.006x + 0.629, r = 0.82) in Asia.  相似文献   

14.
Apolipoproteins (lipid-free) are lipid-binding proteins that circulate in the plasma of human blood and are responsible for the clearance of lipoproteins. Apolipoprotein E (ApoE) is one of the several classes of this protein family. It acts as a ligand for the low-density lipid (LDL) receptors and is important for the clearance of very low-density lipid (VLDL) and chylomicron remnants. The APOE gene locus is polymorphic, with three major known alleles, APOE*3, *4, and *2. We investigated the distribution of the allele frequency of the APOE gene locus and describe here the genetic variation in four Kuwaiti subpopulations: Arab origin (Arabian peninsula), Arab Bedouin tribes, Iranian origin, and the heterogeneous population. We also describe the use of Spreadex gels in resolving the amplified and digested products of the APOE gene locus. DNA was extracted from whole blood and subjected to PCR and then to RFLP analysis. Allele and genotype frequencies were estimated for the total population and for each subpopulation. Statistical analysis showed no difference in the allele frequencies between the four groups. The frequency of APOE*3 in the Kuwaiti population was highest (88.4%) followed by the frequency of APOE*4 (6.5%) and APOE*2 (5.1%). The genotype and allele frequencies obtained for the Kuwaiti population fell within the reported worldwide distribution for the APOE gene locus. Moreover, the results obtained in this study showed no statistical difference (p > 0.05) between the APOE allele and genotype frequencies between the subgroups for all six genotypes and three alleles, supporting the assumption of admixture in the Kuwaiti population and that the obtained frequencies were in Hardy-Weinberg equilibrium. Finally, we found that the distribution of the APOE alleles in Kuwait differs somewhat from those reported in other Arab populations, suggesting that the Arabs originating from the Arabian peninsula are different from those of Lebanon, Morocco, and Sudan.  相似文献   

15.
Apolipoprotein H (apoH, protein; APOH, gene) is a single chain glycoprotein that exists in plasma both in a free form and in combination with lipoprotein particles. ApoH has been implicated in several physiologic pathways, including lipid metabolism, coagulation, and the production of antiphospholipid antibodies. The wide range of interindividual variation in plasma apoH levels is thought to be under genetic control, but its molecular basis is unknown. APOH displays a common structural polymorphism with the occurrence of three common alleles (APOH*1, APOH*2, and APOH*3), the APOH*2 allele being the most frequent in all populations. The relationship between the APOH polymorphism and plasma apoH levels is unknown. In this study, we have determined the impact of this APOH polymorphism on apoH levels in 455 normoglycemic non-Hispanic Whites (220 men and 235 women) from the San Luis Valley, Colorado. Mean plasma apoH levels, determined by capture enzyme-linked immunosorbent assay, were 20.0±0.2 mg/dl (range: 3.4–31.2 mg/dl) with no significant difference between men and women. In women, but not in men, age had a significant effect on plasma apoH levels explaining 3.4% of its phenotypic variance. ApoH levels also correlated positively with cholesterol (P=0.015), HDL-cholesterol (P=0.044), and triglyceride (P=0.037) in women, but not in men. An analysis of variance (ANOVA) of adjusted plasma apoH levels showed significant association with the APOH polymorphism in both men and women (P<0.0001), and the APOH polymorphism accounted for 11.4% and 13.6% of the variation in apoH levels in men and women, respectively. Compared with the APOH*1 and APOH*2 alleles, the APOH*3 allele was associated with significantly lower plasma apoH levels. At the molecular level, APOH*3 can be further subdivided into two distinct forms, called APOH*3 W and APOH*3 B . The APOH*3 W form is more common in US Whites and is the result of a missense mutation at codon 316. An ANOVA for the codon 316 polymorphism revealed that this polymorphism is a major determinant of plasma apoH variation (P<0.0001). This study indicates that common genetic variation in the APOH gene is a significant determinant of plasma apoH levels in non-Hispanics Whites and should be useful in evaluating the role of the APOH genetic variation in various metabolic pathways in which apoH has been implicated. Electronic Publication  相似文献   

16.
The influence of apolipoprotein E (APOE) genotypes on plasma lipid levels was determined in 414 Brazilian healthy children of mixed ethnicity, age 5 to 15 years (mean 8.9+/-2.9). The APOE*3 allele was the most frequent (77%), followed by APOE*4 (17%) and APOE*2 (6%). The pattern of lipid differences among genotypes was similar in both boys and girls. We did not detect an increase in cholesterol levels with the presence of the APOE*4 allele. Because a growing body of evidence suggests that the effect of *4 depends on its interaction with diet, the frequency of *4 might be more variable in children than in adults as well as among populations. Children carrying a *2 allele had lower total cholesterol (TC) and LDL-cholesterol levels (138.47+/-24.32 and 77.72+/-19.42, respectively) compared with *3/*3 children (158.33+/-25.28 and 97.05+/-21.82, respectively). Mean TC/HDLC ratio was also lower in children with the APOE*2 allele (3.27+/-0.66 versus 3.64+/-0.76). In this highly admixed population sample, the *2 anti-atherogenic lipid pattern is already detected in children.  相似文献   

17.
Apolipoprotein polymorphisms are emerging as suitable markers for the study of the formation of human populations. In contrast to the data available for apolipoprotein E, the data regarding apolipoprotein H (protein, apoH; gene, APOH) variations are only beginning to accumulate. By blood plasma isoelectric focusing and immunoblotting, we analyzed the distribution of apoH phenotypes in 397 individuals (192 males; 205 females) from seven villages of an autochthonous population of the eastern Adriatic island of Krk. APOH allele frequencies were: APOH*2 = 0.877, APOH*3 = 0.098, APOH*1 = 0.025, with the majority of the sample being homozygous. No significant differences between villages were observed. When these data were compared to those of other populations studied so far, a significant association between APOH allele frequencies and latitude was observed. We hypothesize that this association reflects differences in diet composition across different climatic zones.  相似文献   

18.
This paper presents data on the distribution of 3 amplified fragment length polymorphisms (D1S80, APOB, and YNZ22) in 5 populations of Central India. Using the polymerase chain reaction technique, 3 caste (Brahmin, Khatri, and Dhimer) and 2 tribal (Gond and Baiga) populations were studied for the 3 loci. The allelic variations observed in the caste populations are compatible with those of many Caucasian populations, but the caste populations showed significant overall and interpopulation variability within the region. D1S80 allele *24 varied from 32% (Dhimers) to 42% (Brahmins). Allele *18 was not observed in Baiga tribal populations, but in caste populations it varied from 11% (Dhimers) to 24% (Brahmins). Both tribal populations showed higher frequencies of allele *31 (17%-18%). For APOB, caste populations again showed bimodal distribution of alleles *35 and *37, but in tribal populations higher allele numbers (*47, *49) were also frequent. For YNZ22, extensive variation was observed for all populations studied. Allele *4 was the most common in caste populations, while alleles *2, *7, and *10 were prominent in tribal populations. The level of gene differentiation is not very high for the 3 systems studied in the 5 populations. Overall, allele frequency distribution, heterozygosity, and genetic diversity analysis show that the genetic diversity observed is socially and geographically structured.  相似文献   

19.
Summary A total of 469 individuals belonging to 4 endogamous groups (Brahamins, Rajputs, Doms and Tharus) from the Kumaon region (North India) were tested for Hp, Gc, Gm and Inv systems.The frequency of the Hp1 allele is low (0.130–0.220) in all 4 groups as in the case of other Indian populations. The absence of the Gm5 allele and high frequency of Inv(1) (49.34%) confirm the Mongoloid affiliations of the Tharus. Brahamins, Rajputs and Doms possess 4 alleles (Gm1, Gm1,2, Gm1,5 and Gm5) at the Gm locus and the frequency of Gm1,2 allele is very low (0.067–0.106) for these groups. The frequency of Inv(1) for Brahamins (19.61%) and Doms (22.78%) lies within the range of variation of European populations. Rajputs, however, show a higher Inv(1) frequency (38.76%).Genetic distances calculated with the help of Hp, Gc and Gm systems demonstrate similarity between Brahamins, Rajputs and Doms and a deviant position for the Tharus.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

20.
The molecular polymorphism displayed by apolipoprotein E (APOE) has been listed as a risk factor for susceptibility to various disorders, such as those associated with lipid metabolism, arteriosclerosis, coronary artery disease (CAD), and Alzheimer disease. To evaluate the role of APOE genotypes as risk factors for Alzheimer disease, CAD, and atherosclerosis in the Kurdish population of Kermanshah, Iran, we studied the frequencies of APOE alleles *2, *3, and *4 and genotypes in 914 healthy Kurdish subjects (514 men and 400 women). The highest frequency of APOE in the Kurdish population was found for APOE*3 (87.87%). The APOE*2 and APOE*4 allele frequencies were 6.66% and 5.45%, respectively. Distribution of APOE genotypes and alleles was not significantly different between male and female subjects (p > 0.05). Interestingly, the order of the frequency of APOE alleles (*3-->*2-->*4) in the Kurdish population was quite different from that reported for most populations in the world (*3-->*4-->*2). The findings of the present study can be used to identify individuals with high risk of CAD and atherosclerosis and suggest a preventive measure to reduce their susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号